Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoya Leonenko is active.

Publication


Featured researches published by Zoya Leonenko.


Journal of Fluorescence | 2005

Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons

Kadir Aslan; Zoya Leonenko; Joseph R. Lakowicz; Chris D. Geddes

The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250°C for several hours. As a function of both time and annealing temperature, the surface plasmon band at ≈420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are osbserved, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis.


Biochimica et Biophysica Acta | 2000

Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy.

Zoya Leonenko; Anna Carnini; David T. Cramb

We have used magnetic alternating current mode atomic force microscopy (MAC-AFM) to investigate the formation of supported phospholipid bilayers (SPB) by the method of vesicle fusion. The systems studied were dioleoylphosphatidylcholine (DOPC) on mica and mica modified with 3-aminopropyl-triethoxy-silane (APTES), and DOPC vesicles with gramicidin incorporated on mica and APTES-modified mica. The AFM images reveal three stages of bilayer formation: localized disklike features that are single bilayer footprints of the vesicles, partial continuous coverage, and finally complete bilayer formation. The mechanism of supported phospholipid bilayers formation is the fusion of proximal vesicles, rather than surface disk migration. This mechanism does not appear to be affected by incorporation of gramicidin or by surface modification. Once formed, the bilayer develops circular defects one bilayer deep. These defects grow in size and number until a dynamic equilibrium is reached.


PLOS ONE | 2011

Effect of Surfaces on Amyloid Fibril Formation

Bradley Moores; Elizabeth Drolle; Simon J. Attwood; Janet Simons; Zoya Leonenko

Using atomic force microscopy (AFM) we investigated the interaction of amyloid beta (Aβ) (1–42) peptide with chemically modified surfaces in order to better understand the mechanism of amyloid toxicity, which involves interaction of amyloid with cell membrane surfaces. We compared the structure and density of Aβ fibrils on positively and negatively charged as well as hydrophobic chemically-modified surfaces at physiologically relevant conditions. We report that due to the complex distribution of charge and hydrophobicity amyloid oligomers bind to all types of surfaces investigated (CH3, COOH, and NH2) although the charge and hydrophobicity of surfaces affected the structure and size of amyloid deposits as well as surface coverage. Hydrophobic surfaces promote formation of spherical amorphous clusters, while charged surfaces promote protofibril formation. We used the nonlinear Poisson-Boltzmann equation (PBE) approach to analyze the electrostatic interactions of amyloid monomers and oligomers with modified surfaces to complement our AFM data.


International Journal of Molecular Sciences | 2013

Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy

Simon J. Attwood; Youngjik Choi; Zoya Leonenko

Cell membranes are typically very complex, consisting of a multitude of different lipids and proteins. Supported lipid bilayers are widely used as model systems to study biological membranes. Atomic force microscopy and force spectroscopy techniques are nanoscale methods that are successfully used to study supported lipid bilayers. These methods, especially force spectroscopy, require the reliable preparation of supported lipid bilayers with extended coverage. The unreliability and a lack of a complete understanding of the vesicle fusion process though have held back progress in this promising field. We document here robust protocols for the formation of fluid phase DOPC and gel phase DPPC bilayers on mica. Insights into the most crucial experimental parameters and a comparison between DOPC and DPPC preparation are presented. Finally, we demonstrate force spectroscopy measurements on DOPC surfaces and measure rupture forces and bilayer depths that agree well with X-ray diffraction data. We also believe our approach to decomposing the force-distance curves into depth sub-components provides a more reliable method for characterising the depth of fluid phase lipid bilayers, particularly in comparison with typical image analysis approaches.


PLOS ONE | 2013

Cu2+ Affects Amyloid-β (1–42) Aggregation by Increasing Peptide-Peptide Binding Forces

Francis Hane; Gary Tran; Simon J. Attwood; Zoya Leonenko

The link between metals, Alzheimers disease (AD) and its implicated protein, amyloid-β (Aβ), is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture force required to dissociate two Aβ (1–42) peptides in the presence of copper ions, Cu2+. In addition, we use atomic force microscopy to resolve the aggregation of Aβ formed. Previous research has shown that metal ions decrease the lag time associated with Aβ aggregation. We show that with the addition of copper ions the unbinding force increases notably. This suggests that the reduction of lag time associated with Aβ aggregation occurs on a single molecule level as a result of an increase in binding forces during the very initial interactions between two Aβ peptides. We attribute these results to copper ions acting as a bridge between the two peptide molecules, increasing the stability of the peptide-peptide complex.


arXiv: Biological Physics | 2014

Effect of metals on kinetic pathways of amyloid-β aggregation.

Francis Hane; Zoya Leonenko

Metal ions, including copper and zinc, have been implicated in the pathogenesis of Alzheimer’s disease through a variety of mechanisms including increased amyloid-β affinity and redox effects. Recent reports have demonstrated that the amyloid-β monomer does not necessarily travel through a definitive intermediary en-route to a stable amyloid fibril structure. Rather, amyloid-β misfolding may follow a variety of pathways resulting in a fibrillar end-product or a variety of oligomeric end-products with a diversity of structures and sizes. The presence of metal ions has been demonstrated to alter the kinetic pathway of the amyloid-β peptide which may lead to more toxic oligomeric end-products. In this work, we review the contemporary literature supporting the hypothesis that metal ions alter the reaction pathway of amyloid-β misfolding leading to more neurotoxic species.


Ultramicroscopy | 2010

Kelvin probe force microscopy in application to biomolecular films: Frequency modulation, amplitude modulation, and lift mode

Brad Moores; Francis Hane; Lukas M. Eng; Zoya Leonenko

Kelvin probe force microscopy (KPFM) is a powerful technique to visualize the differences of work function in metals and lateral surface potential distribution in thin organic films. Earlier we have shown that frequency modulated-Kelvin probe force microscopy has significant advantages in both sensitivity and resolution when applied to metal and inorganic interfaces in vacuum. High resolution, high sensitivity, and performance in ambient conditions are required in order to study biologically relevant samples. In this work we compared the resolution of frequency modulation (FM-KPFM), amplitude modulation (AM-KPFM), and lift modes KPFM for imaging the local electrical surface potential of complex biomolecular films and demonstrated that FM-KPFM mode has superior resolution for biological applications. The power of the method was illustrated on pulmonary surfactant films, revealing nm spatial resolution and mV potential sensitivity in ambient air. At this level of resolution this method can provide critical insight into the molecular arrangement and function of complex biosystems in a way that other KPFM modes cannot do. Based on the observed changes in the local surface potential we discovered that excess cholesterol produces nm size electrostatic domains and change the electric fields.


Drug Metabolism Reviews | 2014

Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer’s disease

Elizabeth Drolle; Francis Hane; Brenda Y. Lee; Zoya Leonenko

Abstract Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer’s patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers – insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.


Biochimica et Biophysica Acta | 2013

Effect of melatonin and cholesterol on the structure of DOPC and DPPC membranes

Elizabeth Drolle; Norbert Kučerka; Matthew I. Hoopes; Youngjik Choi; John Katsaras; Mikko Karttunen; Zoya Leonenko

The cell membrane plays an important role in the molecular mechanism of amyloid toxicity associated with Alzheimers disease. The membranes chemical composition and the incorporation of small molecules, such as melatonin and cholesterol, can alter its structure and physical properties, thereby affecting its interaction with amyloid peptides. Both melatonin and cholesterol have been recently linked to amyloid toxicity. Melatonin has been shown to have a protective role against amyloid toxicity. However, the underlying molecular mechanism of this protection is still not well understood, and cholesterols role remains controversial. We used small-angle neutron diffraction (SAND) from oriented lipid multi-layers, small-angle neutron scattering (SANS) from unilamellar vesicles experiments and Molecular Dynamics (MD) simulations to elucidate non-specific interactions of melatonin and cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membranes. We conclude that melatonin decreases the thickness of both model membranes by disordering the lipid hydrocarbon chains, thus increasing membrane fluidity. This result is in stark contrast to the much accepted ordering effect induced by cholesterol, which causes membranes to thicken.


Langmuir | 2010

Effect of Cholesterol on Electrostatics in Lipid-Protein Films of a Pulmonary Surfactant

Eric Finot; Yuri Leonenko; Brad Moores; Lukas M. Eng; Matthias Amrein; Zoya Leonenko

We report the changes in the electrical properties of the lipid-protein film of pulmonary surfactant produced by excess cholesterol. Pulmonary surfactant (PS) is a complex lipid-protein mixture that forms a molecular film at the interface of the lungs epithelia. The defined molecular arrangement of the lipids and proteins of the surfactant film gives rise to the locally highly variable electrical surface potential of the interface, which becomes considerably altered in the presence of cholesterol. With frequency modulation Kelvin probe force microscopy (FM-KPFM) and force measurements, complemented by theoretical analysis, we showed that excess cholesterol significantly changes the electric field around a PS film because of the presence of nanometer-sized electrostatic domains and affects the electrostatic interaction of an AFM probe with a PS film. These changes in the local electrical field would greatly alter the interaction of the surfactant film with charged species and would immediately impact the manner in which inhaled (often charged) airborne nanoparticles and fibers might interact with the lung interface.

Collaboration


Dive into the Zoya Leonenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Finot

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad Moores

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge