Zoya Tsokolaeva
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zoya Tsokolaeva.
Tissue Engineering Part A | 2009
K. A. Rubina; Natalia O. Kalinina; Anastasia Yu. Efimenko; Tatyana Lopatina; Varvara Melikhova; Zoya Tsokolaeva; Veronika Yu. Sysoeva; Tkachuk Va; Yelena Parfyonova
Adipose-derived stromal cells (ASCs) are suggested to be potent candidates for cell therapy of ischemic conditions due to their ability to stimulate blood vessel growth. ASCs produce many angiogenic and anti-apoptotic growth factors, and their secretion is significantly enhanced by hypoxia. Utilizing a Matrigel implant model, we showed that hypoxia-treated ASCs stimulated angiogenesis as well as maturation of the newly formed blood vessels in vivo. To elucidate mechanisms of ASC angiogenic action, we used a co-culture model of ASCs with cells isolated from early postnatal hearts (cardiomyocyte fraction, CMF). CMF contained mature cardiomyocytes, endothelial cells, and progenitor cells. On the second day of culture CMF cells formed spontaneously beating colonies with CD31+ capillary-like structures outgrowing from those cell aggregates. However, these vessel-like structures were not stable, and disassembled within next 5 days. Co-culturing of CMF with ASCs resulted in the formation of stable and branched CD31+ vessel-like structures. Using immunomagnetic depletion of CMF from vascular cells as well as incubation of CMF with mitomycin C-treated ASCs, we showed that in co-culture ASCs enhance blood vessel growth not only by production of paracrine-acting factors but also by promoting the endothelial differentiation of cardiac progenitor cells. All these mechanisms of actions could be beneficial for the stimulation of angiogenesis in ischemic tissues by ASCs administration.
Journal of Translational Medicine | 2013
Evgeny Shevchenko; Pavel I. Makarevich; Zoya Tsokolaeva; Maria A. Boldyreva; Veronika Yu. Sysoeva; Tkachuk Va; Yelena Parfyonova
BackgroundModified cell-based angiogenic therapy has become a promising novel strategy for ischemic heart and limb diseases. Most studies focused on myoblast, endothelial cell progenitors or bone marrow mesenchymal stromal cells transplantation. Yet adipose-derived stromal cells (in contrast to bone marrow) are abundantly available and can be easily harvested during surgery or liposuction. Due to high paracrine activity and availability ADSCs appear to be a preferable cell type for cardiovascular therapy. Still neither genetic modification of human ADSC nor in vivo therapeutic potential of modified ADSC have been thoroughly studied. Presented work is sought to evaluate angiogenic efficacy of modified ADSCs transplantation to ischemic tissue.Materials and methodsHuman ADSCs were transduced using recombinant adeno-associated virus (rAAV) serotype 2 encoding human VEGF165. The influence of genetic modification on functional properties of ADSCs and their angiogenic potential in animal models were studied.ResultsWe obtained AAV-modified ADSC with substantially increased secretion of VEGF (VEGF-ADSCs). Transduced ADSCs retained their adipogenic and osteogenic differentiation capacities and adhesion properties. The level of angiopoetin-1 mRNA was significantly increased in VEGF-ADSC compared to unmodified cells yet expression of FGF-2, HGF and urokinase did not change. Using matrigel implant model in mice it was shown that VEGF-ADSC substantially stimulated implant vascularization with paralleling increase of capillaries and arterioles. In murine hind limb ischemia test we found significant reperfusion and revascularization after intramuscular transplantation of VEGF-ADSC compared to controls with no evidence of angioma formation.ConclusionsTransplantation of AAV-VEGF- gene modified hADSC resulted in stronger therapeutic effects in the ischemic skeletal muscle and may be a promising clinical treatment for therapeutic angiogenesis.
PLOS ONE | 2012
Pavel I. Makarevich; Zoya Tsokolaeva; Alexander Shevelev; Igor Rybalkin; Evgeny Shevchenko; I. B. Beloglazova; Tatyana Vlasik; Tkachuk Va; Yelena Parfyonova
Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of “single-gene” administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders.
Archives of Dermatological Research | 2017
K. A. Rubina; V. Yu. Sysoeva; E. I. Zagorujko; Zoya Tsokolaeva; M. I. Kurdina; Ye. V. Parfyonova; Tkachuk Va
There is substantial evidence implicating the urokinase system in tissue remodeling during neo-vascularization, inflammation, tumor invasion, and metastasis. Regulated degradation of the extracellular matrix at the leading edge of migrating cells, mediated by uPA and uPAR, is required for tissue remodeling, invasiveness, and angiogenesis. Psoriasis and basal cell carcinoma (BCC) are the most common skin diseases. Pathogenesis of both of them is associated with keratinocyte hyperproliferation, inflammatory cell migration, and angiogenesis—processes in which the plasminogen system (uPA, uPAR, tPA, and PAI-1) plays a crucial role. In the present study, the comparative analysis of uPA, uPAR, tPA, and PAI-1 expression in the normal skin, in the biopsies of patients with psoriasis vulgaris, and BCC was carried out. uPA, uPAR, and PAI-1 expression was up-regulated in the epidermis of psoriatic skin and in tumor cells in BCC. Increased uPAR expression was detected in the derma of psoriatic lesions and in the stroma surrounding tumor cells in BCC. Increased expression of uPA in epidermal cells in psoriasis and in tumor cells in BCC suggests an important role of the uPA system for aggressively proliferating and invading cells of epidermal origin. A possible activation of the stroma, as a result of uPA–uPAR interaction between tumor cells and the surrounding stroma, is suggested.
Biochemistry | 2015
I. S. Stafeev; M. Y. Menshikov; Zoya Tsokolaeva; M. V. Shestakova; Ye. V. Parfyonova
The problem of metabolic syndrome is one of the most important in medicine today. The main hazard of metabolic syndrome is development of latent inflammation in adipose tissue, which promotes atherosclerosis, non-alcoholic fatty liver disease, myocarditis, and a number of other illnesses. Therefore, understanding of molecular mechanisms of latent inflammation in adipose tissue is very important for treatment of metabolic syndrome. Three main components that arise during hypertrophy and hyperplasia of adipocytes underlie such inflammation: endoplasmic reticulum stress, oxidative stress, and hypoxia. Each of these components mediates activation in different ways of the key factor of inflammation–NF-κB. For metabolic syndrome therapy, it is suggested to influence a number of inflammatory signaling components by activating other cell factors to suppress development of inflammation. Such potential factors are peroxisome proliferator-activated receptors type γ that suppress transcription factor NF-κB through direct contact or via kinase of a NF-κB inhibitor (IKK), and also the antiinflammatory transcription factor AP-1. Other possible targets are type 3 NAD+-dependent histone deacetylases (sirtuins). There are mutually antagonistic relationships between NF-κB and sirtuin type 1 that prevent development of inflammation in metabolic syndrome. Moreover, sirtuin type 1 inhibits the antiinflammatory transcription factor AP-1. Study of the influence of these factors on the relationship between macrophages and adipocytes, macrophages, and adipose tissue-derived stromal cells can help to understand mechanisms of signaling and development of latent inflammation in metabolic syndrome.
Tissue & Cell | 2017
Konstantin V. Dergilev; Pavel I. Makarevich; Zoya Tsokolaeva; Maria A. Boldyreva; I. B. Beloglazova; E. S. Zubkova; Mikhail Yu. Menshikov; Yelena Parfyonova
Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC. Our in-house developed method using chelation by Versene solution was compared to UpCell™ thermoresponsive plates in terms of CSC proliferation, viability, gap junction formation and engraftment in a model of myocardial infarction. Use of Versene solution instead of thermoresponsive dishes resulted in comparable CS thickness (approximately 100mcm), cell proliferation rate and no signs of apoptosis detected in both types of constructs. However, we observed a minor reduction of gap junction count in Versene-treated CS. At day 30 after delivery to infarcted myocardium both types of CS retained at the site of transplantation and contained comparable amounts of proliferating cells indicating engraftment. Thus, we may conclude that detachment of CS from c-kit+ CSC using Versene solution followed by mechanical treatment is an alternative to thermoresponsive plates allowing use of routinely available materials to generate constructs for cardiac repair.
Journal of Biological Chemistry | 2017
Victoria Stepanova; Konstantin V. Dergilev; Kelci R. Holman; Yelena Parfyonova; Zoya Tsokolaeva; Mimi Teter; Elena N. Atochina-Vasserman; Alla Volgina; Sergei Zaitsev; Shane P. Lewis; Fedor G. Zabozlaev; Kseniya Obraztsova; Vera P. Krymskaya; Douglas B. Cines
Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin–positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAMs molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1−/− and Tsc2−/− mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo. These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.
Cell and Tissue Biology | 2016
Konstantin V. Dergilev; Zoya Tsokolaeva; K. A. Rubina; V. Yu. Sysoeva; Pavel I. Makarevich; Maria A. Boldyreva; I. B. Beloglazova; E. S. Zubkova; G. V. Sharonov; R. S. Akchurin; Ye. V. Parfyonova
Resident cardiac stem cells, known as “cardiogenic progenitor cells” (CPCs), are a heterogeneous population of immature cells residing in the myocardium and capable of self-renewal and differentiation into cardiomyocyte-like and vascular-like cells. CPCs are usually isolated by long enzymatic digestion of heart tissue and selection with stem cell markers. However, long exposure to enzymatic digestion and the small size of a myocardial sample significantly hinder acquiring a large number of viable cells. To avoid these problems, we developed a method based on CPC growth ex vivo and subsequent immunomagnetic selection.
PLOS ONE | 2018
Pavel I. Makarevich; Konstantin V. Dergilev; Zoya Tsokolaeva; Maria A. Boldyreva; Evgeniy K. Shevchenko; Evgeny V. Gluhanyuk; Julia O. Gallinger; Mikhail Yu. Menshikov; Yelena Parfyonova
Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both—VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both–VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both–VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.
BioMed Research International | 2018
Konstantin V. Dergilev; Zoya Tsokolaeva; Pavel I. Makarevich; I.B. Beloglazova; E.S. Zubkova; M.А. Boldyreva; E. I. Ratner; D. Dyikanov; M. Y. Menshikov; A. Ovchinnikov; F. Ageev; Ye. V. Parfyonova
The adult heart contains small populations of multipotent cardiac progenitor cells (CPC) that present a convenient and efficient resource for treatment of myocardial infarction. Several clinical studies of direct CPC delivery by injection have already been performed but showed low engraftment rate that limited beneficial effects of procedure. «Cell sheet» technology has been developed to facilitate longer retention of grafted cells and show new directions for cell-based therapy using this strategy. In this study we hypothesized that СPC-based cell sheet transplantation could improve regeneration after myocardial infarction. We demonstrated that c-kit+ CPC were able to form cell sheets on temperature-responsive surfaces. Cell sheet represented a well-organized structure, in which CPC survived, retained ability to proliferate, expressed progenitor cell marker Gata-4 formed connexin-43+ gap junctions, and were surrounded by significant amount of extracellular matrix proteins. Transplantation of cell sheets after myocardial infarction resulted in CPC engraftment as well as their proliferation, migration, and differentiation; cell sheets also stimulated neovascularization and cardiomyocyte proliferation in underlining myocardium and ameliorated left ventricular remodeling. Obtained data strongly supported potential use of CPC sheet transplantation for repair of damaged heart.