Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsuzsanna Polgar is active.

Publication


Featured researches published by Zsuzsanna Polgar.


Cloning and Stem Cells | 2009

Live Birth of Somatic Cell-Cloned Rabbits following Trichostatin A Treatment and Cotransfer of Parthenogenetic Embryos

Qinggang Meng; Zsuzsanna Polgar; Jun Liu; Andras Dinnyes

Somatic cell nuclear transfer (SCNT) efficiency is still low in rabbit. Previous studies indicated that trichostatin A (TSA) treatment could improve cloning efficiency and term development in the mouse, and cotransfer of parthenogenetic (PA) embryos benefited the pregnancy of cloned embryos in porcine and the mouse. In this study we investigated the effect of TSA treatment on the term development of the SCNT rabbit embryos, and the possibility of the pregnancy maintenance of clones by cotransfer of PA embryos. The SCNT embryos were produced by fusing cumulus cells with enucleated cytoplasts before activation by electrical stimulation, and Dimethylaminopurine (6-DMAP) and Cyclohexamide (CHX) treatments. They were cultured in EBSS-complete medium regardless of their treatment with or without TSA. In vitro developmental data showed no differences in the cleavage and the blastocyst rates, and the blastocyst cell number between the TSA-treated and the untreated SCNT embryos. Two of the six recipients became pregnant after the embryo transfer (ET) in the TSA-treated group, and one pregnant female delivered seven live and three stillborn pups. The death of all live pups occurred within an hour to 19 days. Four of the seven recipients became pregnant in the TSA-untreated group. Three of them gave birth to six live and eight stillborn pups. Four pups of the TSA-untreated group have grown into adulthood, and three of them produced progeny. Cotransfer of three to four PA embryos with 26-32 SCNT embryos to the same recipient resulted in pregnancy and birth rates statistically no different compared to the control SCNT ET group. In conclusion, our results indicate that TSA treatment has a limited effect on the in vitro development of the SCNT embryos; furthermore, both the TSA-treated and the untreated clones can develop to term in rabbits, but none of the offspring from TSA-treated embryos survived to adulthood in our experiment.


BMC Molecular Biology | 2008

Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos

Solomon Mamo; Arpad Baji Gal; Zsuzsanna Polgar; Andras Dinnyes

BackgroundThe surge in the number of gene expression studies and tendencies to increase the quality of analysis have necessitated the identification of stable reference genes. Although rabbits are classical experimental model animals, stable reference genes have not been identified for normalization. The aims of this study were to compare the expression profiles of the widely used reference genes in rabbit oocytes and preimplantation stage embryos, and to select and validate stable ones to use as reference.ResultsQuantitative real time PCR method was used to evaluate 13 commonly used references (Actb, Gapdh, Hprt1, H2afz, Ubc, Ppia, Eef1e1, Polr2a, Tbp, G6pdx, B2m, Pgk1, and Ywhaz) and POU5F1 (Oct4) genes. Expressions of these genes were examined in multiple individual embryos of seven different preimplantation developmental stages and embryo types (in vivo and in vitro). Initial analysis identified three genes (Ubc, Tbp, and B2m) close to the detection limit with irregular expression between the different stages. As variability impedes the selection of stable genes, these were excluded from further analysis. The expression levels of the remaining ten genes, varied according to developmental stage and embryo types. These genes were ranked using the geNorm software and finally the three most stable references (H2afz, Hprt1, and Ywhaz) were selected. Normalization factor was calculated (from the geometric averages of the three selected genes) and used to normalize the expressions of POU5F1 gene. The results showed the expected expression patterns of the POU5F1 during development.ConclusionCompared to the earlier studies with similar objectives, the comparison of large number of genes, the use of multiple individual embryos as compared to pools, and simultaneous analyses of in vitro and in vivo derived embryo samples were unique approaches in our study. Based on quantification, pattern and geNorm analyses, we found the three genes (H2afz, Hprt1, and Ywhaz) to be the most stable across developmental stages and embryo types, and the geometric averages of these genes can be used for appropriate normalization.


BMC Molecular Biology | 2009

Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos

Julianna Kobolák; Katalin Kiss; Zsuzsanna Polgar; Solomon Mamo; Claire Rogel-Gaillard; Zsuzsanna Táncos; István Bock; Arpad G Baji; Krisztina Tar; Melinda K. Pirity; Andras Dinnyes

BackgroundThe POU5F1 gene encodes the octamer-binding transcription factor-4 (Oct4). It is crucial in the regulation of pluripotency during embryonic development and widely used as molecular marker of embryonic stem cells (ESCs). The objective of this study was to identify and to analyse the promoter region of rabbit POU5F1 gene; furthermore to examine its expression pattern in preimplantation stage rabbit embryos.ResultsThe upstream region of rabbit POU5F1 was subcloned sequenced and four highly conserved promoter regions (CR1-4) were identified. The highest degree of similarity on sequence level was found among the conserved domains between rabbit and human. Among the enhancers the proximal enhancer region (PE-1A) exhibited the highest degree of homology (96.4%). Furthermore, the CR4 regulator domain containing the distal enhancer (DE-2A) was responsible for stem cell-specific expression. Also, BAC library screen revealed the existence of a processed pseudogene of rabbit POU5F1. The results of quantitative real-time PCR experiments showed that POU5F1 mRNA was abundantly present in oocytes and zygotes, but it was gradually reduced until the activation of the embryonic genome, thereafter a continuous increase in POU5F1 mRNA level was observed until blastocyst stage. By using the XYClone laser system the inner cell mass (ICM) and trophoblast portions of embryos were microdissected and examined separately and POU5F1 mRNA was detected in both cell types.ConclusionIn this study we provide a comparative sequence analysis of the regulatory region of rabbit POU5F1 gene. Our data suggest that the POU5F1 gene is strictly regulated during early mammalian development. We proposed that the well conserved CR4 region containing the DE-2A enhancer is responsible for the highly conserved ESC specific gene expression. Notably, we are the first to report that the rabbit POU5F1 is not restricted to ICM cells only, but it is expressed in trophoblast cells as well. This information may be well applicable to investigate further the possible phylogenetic role and the regulation of POU5F1 gene.


Cryobiology | 2012

In vitro fertilization of ovine oocytes vitrified by solid surface vitrification at germinal vesicle stage

Adel R. Moawad; P. Fisher; Jie Zhu; Inchul Choi; Zsuzsanna Polgar; Andras Dinnyes; Keith H.S. Campbell

Cryopreservation of immature oocytes at germinal vesicle (GV) stage would provide a readily available source of oocytes for use in research and allow experiments to be performed irrespective of seasonality or other constraints. This study was designed to evaluate the recovery, viability, maturation status, fertilization events and subsequent development of ovine oocytes vitrified at GV stage using solid surface vitrification (SSV). Cumulus oocyte complexes (COCs) obtained from mature ewes were randomly divided into three groups (1) SSV (oocytes were vitrified using SSV), (2) EXP (oocytes were exposed to vitrification and warming solutions without vitrification) or (3) Untreated (control). Following vitrification and warming, viable oocytes were matured in vitro for 24h. After that, nuclear maturation was evaluated using orcein staining. Matured oocytes were fertilized and cultured in vitro for 7days. Following SSV, 75.7% 143/189 oocytes were recovered. Of those oocytes recovered 74.8%, 107/143 were morphologically normal (viable). Frequencies of in vitro maturation were significantly (P<0.01) decreased in SSV and EXP groups as compared to control. In vitro fertilization rates were significantly (P<0.01) decreased in SSV (39.3%) group as compared to EXP (56.4%) and control (64.7%) groups. Cleavage at 48h post insemination (pi) and development to the blastocyst stage on day 7 pi were significantly (P<0.001) decreased in SSV oocytes as compared to EXP and control groups. In conclusion, immature ovine oocytes vitrified using SSV as a simple and rapid procedure can survive and subsequently be matured, fertilized and cultured in vitro up to the blastocyst stage, although the frequency of development is low.


Stem cell reports | 2015

Amelioration of Hyperbilirubinemia in Gunn Rats after Transplantation of Human Induced Pluripotent Stem Cell-Derived Hepatocytes

Yong Chen; Yanfeng Li; Xia Wang; Wei Zhang; Vanessa Sauer; Chan Jung Chang; Bing Han; Tatyana Tchaikovskaya; Yesim Avsar; Edgar Tafaleng; Sanal Madhusudana Girija; Krisztina Tar; Zsuzsanna Polgar; Stephen C. Strom; Eric E. Bouhassira; Chandan Guha; Ira J. Fox; Jayanta Roy-Chowdhury; Namita Roy-Chowdhury

Summary Hepatocyte transplantation has the potential to cure inherited liver diseases, but its application is impeded by a scarcity of donor livers. Therefore, we explored whether transplantation of hepatocyte-like cells (iHeps) differentiated from human induced pluripotent stem cells (iPSCs) could ameliorate inherited liver diseases. iPSCs reprogrammed from human skin fibroblasts were differentiated to iHeps, which were transplanted into livers of uridinediphosphoglucuronate glucuronosyltransferase-1 (UGT1A1)-deficient Gunn rats, a model of Crigler-Najjar syndrome 1 (CN1), where elevated unconjugated bilirubin causes brain injury and death. To promote iHep proliferation, 30% of the recipient liver was X-irradiated before transplantation, and hepatocyte growth factor was expressed. After transplantation, UGT1A1+ iHep clusters constituted 2.5%–7.5% of the preconditioned liver lobe. A decline of serum bilirubin by 30%–60% and biliary excretion of bilirubin glucuronides indicated that transplanted iHeps expressed UGT1A1 activity, a postnatal function of hepatocytes. Therefore, iHeps warrant further exploration as a renewable source of hepatocytes for treating inherited liver diseases.


Experimental Cell Research | 2012

Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer.

Suchitra Muenthaisong; O. Ujhelly; Zsuzsanna Polgar; Eszter Varga; Zoltán Ivics; Melinda K. Pirity; Andras Dinnyes

Induced pluripotent stem (iPS) cell technology involves reprogramming somatic cells to a pluripotent state. The original technology used to produce these cells requires viral gene transduction and results in the permanent integration of exogenous genes into the genome. This can lead to the development of abnormalities in the derived iPS cells. Here, we report that non-viral transfection of a Sleeping Beauty (SB) transposon containing the coding sequences Oct3/4 (Pouf1), Sox-2, Klf-4 and c-Myc (OSKM) linked with 2A peptides, can reprogram mouse fibroblasts. We have established reprogrammed mouse cell lines from three different genetic backgrounds: (1) ICR-outbred, (2) C57BL/6-inbred and (3) F1-hybrid (C57BL/6 x DBA/2J), with parallel robust expression of all exogenous (Oct3/4, Sox-2, Klf-4, and c-Myc) and endogenous (e.g. Oct3/4 and Nanog) pluripotency genes. The iPS cell lines exhibited characteristics typical for undifferentiated embryonic stem (ES) cell lines: ES cell-like morphology, alkaline phosphatase (ALP) positivity and gene expression pattern (shown by reverse transcription PCR, and immunofluorescence of ES cell markers-e.g. Oct3/4, SSEA1, Nanog). Furthermore, cells were able to form embryoid bodies (EBs), to beat rhythmically, and express cardiac (assayed by immunofluorescence, e.g. cardiac Troponin T, desmin) and neuronal (assayed by immunofluorescence e.g. nestin, Tuj1) markers. The in vitro differentiation potential was found to be the highest in the ICR-derived iPS lines (ICR-iPS). Interestingly, the ICR-iPS lines had even higher differentiation potential than the ICR-ES cell lines: the rate of EBs forming rhythmically beating cardiomyocytes was 4% in ICR-ES and 79% in ICR-iPS cells, respectively. In vivo, the ICR and F1 hybrid iPS cells formed chimeras and one of the iPS cells from the F1 hybrid background transmitted to the germline. Our results suggest that iPS technology may be useful for generating pluripotent stem cells from genetic backgrounds of which good quality ES cell generation is difficult. These studies provide insights into viral-free iPS technology and may contribute towards defining future cell-based therapies, drug-screening methods and production of transgenic animals using genetically modified iPS cells.


Molecular Reproduction and Development | 2009

Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

O. Svarcova; Andras Dinnyes; Zsuzsanna Polgar; Szilard Bodo; M. Adorjan; Qinggang Meng; Poul Maddox-Hyttel

Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2‐cell and late 4‐cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer of mouse embryonic fibroblast (MEF) and mouse HM1 embryonic stem cells (HM1), were processed for autoradiography following 3H‐uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF and nucleophosmin, B23). All early 2‐cell embryos showed transcriptional activity only in nucleoplasm, not over nucleolar precursor bodies (NPBs). UBF was diffusely localized to cytoplasm and B23 to cytoplasm and nucleoplasm. Late 2‐cell IVF and PG embryos displayed transcription over nucleoplasm and NPBs. Ultrastructurally, the latter were developing into functional nucleoli. NT‐MEF and NT‐HM1 embryos displayed transcription over nucleoplasm, but not over NPBs. Development of NPBs into nucleoli was lacking. UBF was in both groups localized to nucleoplasm or distinctly to presumptive NPBs. B23 was distinctly localized to NPBs. All 4‐cell embryos presented nucleoplasmic transcription and developing fibrillo‐granular nucleoli. UBF and B23 were distinctly localized to nucleoli. However, whereas fully transformed reticulated fibrillo‐granular nucleoli were found in IVF and PG embryos, NT‐MEF and ‐HM1 embryos displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT‐MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT‐HM1 embryos, both of these processes were delayed. Mol. Reprod. Dev. 76: 132–141, 2009.


Theriogenology | 2012

Generation of rabbit pluripotent stem cell lines.

Zsuzsanna Táncos; Csilla Nemes; Zsuzsanna Polgar; Elen Gócza; N. Daniel; T.A.E. Stout; P. Maraghechi; Melinda K. Pirity; P. Osteil; Y. Tapponnier; Suzy Markossian; Marielle Afanassieff; Z. Bosze; Véronique Duranthon; Pierre Savatier; Andras Dinnyes

Pluripotent stem cells have the capacity to divide indefinitely and to differentiate into all somatic cells and tissue lines. They can be genetically manipulated in vitro by knocking genes in or out, and therefore serve as an excellent tool for gene function studies and for the generation of models for some human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, many attempts have been made to generate pluripotent stem cell lines from other species. Comparative characterization of ESCs from different species would help us to understand differences and similarities in the signaling pathways involved in the maintenance of pluripotency and the initiation of differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved across different species. This report gives an overview of research into embryonic and induced pluripotent stem cells in the rabbit, an important nonrodent species with considerable merits as an animal model for specific diseases. A number of putative rabbit ESC and induced pluripotent stem cell lines have been described. All of them expressed stem cell-associated markers and maintained apparent pluripotency during multiple passages in vitro, but none have been convincingly proven to be fully pluripotent in vivo. Moreover, as in other domestic species, the markers currently used to characterize the putative rabbit ESCs are suboptimal because recent studies have revealed that they are not always specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a validated panel of molecular markers specific to pluripotent cells of the developing rabbit embryos. Using rabbit-specific pluripotency genes may improve the efficiency of somatic cell reprogramming for generating induced pluripotent stem cells and thereby overcome some of the challenges limiting the potential of this technology.


Experimental Cell Research | 2014

Generation of transgene-free mouse induced pluripotent stem cells using an excisable lentiviral system

Eszter Varga; Csilla Nemes; Richard P. Davis; O. Ujhelly; Nuttha Klincumhom; Zsuzsanna Polgar; Suchitra Muenthaisong; Melinda K. Pirity; Andras Dinnyes

One goal of research using induced pluripotent stem cell (iPSC) is to generate patient-specific cells which can be used to obtain multiple types of differentiated cells as disease models. Minimally or non-integrating methods to deliver the reprogramming genes are considered to be the best but they may be inefficient. Lentiviral delivery is currently among the most efficient methods but it integrates transgenes into the genome, which may affect the behavior of the iPSC if integration occurs into an important locus. Here we designed a polycistronic lentiviral construct containing four pluripotency genes with an EGFP selection marker. The cassette was excisable with the Cre-loxP system making possible the removal of the integrated transgenes from the genome. Mouse embryonic fibroblasts were reprogrammed using this viral system, rapidly resulting in large number of iPSC colonies. Based on the lowest EGFP expression level, one parental line was chosen for excision. Introduction of the Cre recombinase resulted in transgene-free iPSC subclones. The effect of the transgenes was assessed by comparing the parental iPSC with two of its transgene-free subclones. Both excised and non-excised iPSCs expressed standard pluripotency markers. The subclones obtained after Cre recombination were capable of differentiation in vitro, in contrast to the parental, non-excised cells and formed germ-line competent chimeras in vivo.


Cell Transplantation | 2016

Human Urinary Epithelial Cells as a Source of Engraftable Hepatocyte-Like Cells Using Stem Cell Technology.

Vanessa Sauer; Tatyana Tchaikovskaya; Xia Wang; Yanfeng Li; Wei Zhang; Krisztina Tar; Zsuzsanna Polgar; Jianqiang Ding; Chandan Guha; Ira J. Fox; Namita Roy-Chowdhury; Jayanta Roy-Chowdhury

Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.

Collaboration


Dive into the Zsuzsanna Polgar's collaboration.

Top Co-Authors

Avatar

Andras Dinnyes

Szent István University

View shared research outputs
Top Co-Authors

Avatar

Melinda K. Pirity

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jayanta Roy-Chowdhury

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Namita Roy-Chowdhury

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yanfeng Li

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Solomon Mamo

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Eszter Varga

Szent István University

View shared research outputs
Top Co-Authors

Avatar

István Bock

Szent István University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandan Guha

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge