Featured Researches

Symbolic Computation

CAD Adjacency Computation Using Validated Numerics

We present an algorithm for computation of cell adjacencies for well-based cylindrical algebraic decomposition. Cell adjacency information can be used to compute topological operations e.g. closure, boundary, connected components, and topological properties e.g. homology groups. Other applications include visualization and path planning. Our algorithm determines cell adjacency information using validated numerical methods similar to those used in CAD construction, thus computing CAD with adjacency information in time comparable to that of computing CAD without adjacency information. We report on implementation of the algorithm and present empirical data.

Read more
Symbolic Computation

Can one design a geometry engine? On the (un)decidability of affine Euclidean geometries

We survey the status of decidabilty of the consequence relation in various axiomatizations of Euclidean geometry. We draw attention to a widely overlooked result by Martin Ziegler from 1980, which proves Tarski's conjecture on the undecidability of finitely axiomatizable theories of fields. We elaborate on how to use Ziegler's theorem to show that the consequence relations for the first order theory of the Hilbert plane and the Euclidean plane are undecidable. As new results we add: (A) The first order consequence relations for Wu's orthogonal and metric geometries (Wen-Tsün Wu, 1984), and for the axiomatization of Origami geometry (J. Justin 1986, H. Huzita 1991)are undecidable. It was already known that the universal theory of Hilbert planes and Wu's orthogonal geometry is decidable. We show here using elementary model theoretic tools that (B) the universal first order consequences of any geometric theory T of Pappian planes which is consistent with the analytic geometry of the reals is decidable.

Read more
Symbolic Computation

Certificates for triangular equivalence and rank profiles

In this paper, we give novel certificates for triangular equivalence and rank profiles. These certificates enable to verify the row or column rank profiles or the whole rank profile matrix faster than recomputing them, with a negligible overall overhead. We first provide quadratic time and space non-interactive certificates saving the logarithmic factors of previously known ones. Then we propose interactive certificates for the same problems whose Monte Carlo verification complexity requires a small constant number of matrix-vector multiplications, a linear space, and a linear number of extra field operations. As an application we also give an interactive protocol, certifying the determinant of dense matrices, faster than the best previously known one.

Read more
Symbolic Computation

Certification of minimal approximant bases

For a given computational problem, a certificate is a piece of data that one (the prover) attaches to the output with the aim of allowing efficient verification (by the verifier) that this output is correct. Here, we consider the minimal approximant basis problem, for which the fastest known algorithms output a polynomial matrix of dimensions m×m and average degree D/m using O ~ ( m ω D m ) field operations. We propose a certificate which, for typical instances of the problem, is computed by the prover using O( m ω D m ) additional field operations and allows verification of the approximant basis by a Monte Carlo algorithm with cost bound O( m ω +mD) . Besides theoretical interest, our motivation also comes from the fact that approximant bases arise in most of the fastest known algorithms for linear algebra over the univariate polynomials; thus, this work may help in designing certificates for other polynomial matrix computations. Furthermore, cryptographic challenges such as breaking records for discrete logarithm computations or for integer factorization rely in particular on computing minimal approximant bases for large instances: certificates can then be used to provide reliable computation on outsourced and error-prone clusters.

Read more
Symbolic Computation

Certified evaluations of Hölder continuous functions at roots of polynomials

Various methods can obtain certified estimates for roots of polynomials. Many applications in science and engineering additionally utilize the value of functions evaluated at roots. For example, critical values are obtained by evaluating an objective function at critical points. For analytic evaluation functions, Newton's method naturally applies to yield certified estimates. These estimates no longer apply, however, for Hölder continuous functions, which are a generalization of Lipschitz continuous functions where continuous derivatives need not exist. This work develops and analyzes an alternative approach for certified estimates of evaluating locally Hölder continuous functions at roots of polynomials. An implementation of the method in Maple demonstrates efficacy and efficiency.

Read more
Symbolic Computation

Certifying solutions to overdetermined and singular polynomial systems over Q

This paper is concerned with certifying that a given point is near an exact root of an overdetermined or singular polynomial system with rational coefficients. The difficulty lies in the fact that consistency of overdetermined systems is not a continuous property. Our certification is based on hybrid symbolic-numeric methods to compute the exact "rational univariate representation" (RUR) of a component of the input system from approximate roots. For overdetermined polynomial systems with simple roots, we compute an initial RUR from approximate roots. The accuracy of the RUR is increased via Newton iterations until the exact RUR is found, which we certify using exact arithmetic. Since the RUR is well-constrained, we can use it to certify the given approximate roots using alpha-theory. To certify isolated singular roots, we use a determinantal form of the "isosingular deflation", which adds new polynomials to the original system without introducing new variables. The resulting polynomial system is overdetermined, but the roots are now simple, thereby reducing the problem to the overdetermined case. We prove that our algorithms have complexity that are polynomial in the input plus the output size upon successful convergence, and we use worst case upper bounds for termination when our iteration does not converge to an exact RUR. Examples are included to demonstrate the approach.

Read more
Symbolic Computation

Chain Rules for Hessian and Higher Derivatives Made Easy by Tensor Calculus

Computing multivariate derivatives of matrix-like expressions in the compact, coordinate free fashion is very important for both theory and applied computations (e.g. optimization and machine learning). The critical components of such computations are \emph{chain and product rules} for derivatives. Although they are taught early in simple scenarios, practical applications involve high-dimensional arrays; in this context it is very hard to find easy accessible and compact explanation. This paper discusses how to relatively simply carry such derivations based on the (simplified as adapted in applied computer science) concept of tensors. Numerical examples in modern Python libraries are provided. This discussion simplifies and illustrates an earlier exposition by Manton (2012).

Read more
Symbolic Computation

Characterizing Triviality of the Exponent Lattice of A Polynomial through Galois and Galois-Like Groups

The problem of computing \emph{the exponent lattice} which consists of all the multiplicative relations between the roots of a univariate polynomial has drawn much attention in the field of computer algebra. As is known, almost all irreducible polynomials with integer coefficients have only trivial exponent lattices. However, the algorithms in the literature have difficulty in proving such triviality for a generic polynomial. In this paper, the relations between the Galois group (respectively, \emph{the Galois-like groups}) and the triviality of the exponent lattice of a polynomial are investigated. The $\bbbq$\emph{-trivial} pairs, which are at the heart of the relations between the Galois group and the triviality of the exponent lattice of a polynomial, are characterized. An effective algorithm is developed to recognize these pairs. Based on this, a new algorithm is designed to prove the triviality of the exponent lattice of a generic irreducible polynomial, which considerably improves a state-of-the-art algorithm of the same type when the polynomial degree becomes larger. In addition, the concept of the Galois-like groups of a polynomial is introduced. Some properties of the Galois-like groups are proved and, more importantly, a sufficient and necessary condition is given for a polynomial (which is not necessarily irreducible) to have trivial exponent lattice.

Read more
Symbolic Computation

Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition

Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a sequence of formulae are truth-invariant. Like all CAD algorithms the user must provide a variable ordering which can have a profound impact on the tractability of a problem. We evaluate existing heuristics to help with the choice for this algorithm, suggest improvements and then derive a new heuristic more closely aligned with the mechanics of the new algorithm.

Read more
Symbolic Computation

Choosing the Variable Ordering for Cylindrical Algebraic Decomposition via Exploiting Chordal Structure

Cylindrical algebraic decomposition (CAD) plays an important role in the field of real algebraic geometry and many other areas. As is well-known, the choice of variable ordering while computing CAD has a great effect on the time and memory use of the computation as well as the number of sample points computed. In this paper, we indicate that typical CAD algorithms, if executed with respect to a special kind of variable orderings (called "the perfect elimination orderings"), naturally preserve chordality, which is an important property on sparsity of variables. Experimentation suggests that if the associated graph of the polynomial system in question is chordal (\emph{resp.}, is nearly chordal), then a perfect elimination ordering of the associated graph (\emph{resp.}, of a minimal chordal completion of the associated graph) can be a good variable ordering for the CAD computation. That is, by using the perfect elimination orderings, the CAD computation may produce a much smaller full set of projection polynomials than by using other naive variable orderings. More importantly, for the complexity analysis of the CAD computation via a perfect elimination ordering, a so-called (m,d) -property of the full set of projection polynomials obtained via such an ordering is given, through which the "size" of this set is characterized. This property indicates that when the corresponding perfect elimination tree has a lower height, the full set of projection polynomials also tends to have a smaller "size". This is well consistent with the experimental results, hence the perfect elimination orderings with lower elimination tree height are further recommended to be used in the CAD projection.

Read more

Ready to get started?

Join us today