Featured Researches

Artificial Intelligence

AliMe KG: Domain Knowledge Graph Construction and Application in E-commerce

Pre-sales customer service is of importance to E-commerce platforms as it contributes to optimizing customers' buying process. To better serve users, we propose AliMe KG, a domain knowledge graph in E-commerce that captures user problems, points of interests (POI), item information and relations thereof. It helps to understand user needs, answer pre-sales questions and generate explanation texts. We applied AliMe KG to several online business scenarios such as shopping guide, question answering over properties and recommendation reason generation, and gained positive results. In the paper, we systematically introduce how we construct domain knowledge graph from free text, and demonstrate its business value with several applications. Our experience shows that mining structured knowledge from free text in vertical domain is practicable, and can be of substantial value in industrial settings.

Read more
Artificial Intelligence

An Algorithm for Automatically Updating a Forsyth-Edwards Notation String Without an Array Board Representation

We present an algorithm that correctly updates the Forsyth-Edwards Notation (FEN) chessboard character string after any move is made without the need for an intermediary array representation of the board. In particular, this relates to software that have to do with chess, certain chess variants and possibly even similar board games with comparable position representation. Even when performance may be equal or inferior to using arrays, the algorithm still provides an accurate and viable alternative to accomplishing the same thing, or when there may be a need for additional or side processing in conjunction with arrays. Furthermore, the end result (i.e. an updated FEN string) is immediately ready for export to any other internal module or external program, unlike with an intermediary array which needs to be first converted into a FEN string for export purposes. The algorithm is especially useful when there are no existing array-based modules to represent a visual board as it can do without them entirely. We provide examples that demonstrate the correctness of the algorithm given a variety of positions involving castling, en passant and pawn promotion.

Read more
Artificial Intelligence

An Argumentation-based Approach for Explaining Goal Selection in Intelligent Agents

During the first step of practical reasoning, i.e. deliberation or goals selection, an intelligent agent generates a set of pursuable goals and then selects which of them he commits to achieve. Explainable Artificial Intelligence (XAI) systems, including intelligent agents, must be able to explain their internal decisions. In the context of goals selection, agents should be able to explain the reasoning path that leads them to select (or not) a certain goal. In this article, we use an argumentation-based approach for generating explanations about that reasoning path. Besides, we aim to enrich the explanations with information about emerging conflicts during the selection process and how such conflicts were resolved. We propose two types of explanations: the partial one and the complete one and a set of explanatory schemes to generate pseudo-natural explanations. Finally, we apply our proposal to the cleaner world scenario.

Read more
Artificial Intelligence

An Argumentation-based Approach for Identifying and Dealing with Incompatibilities among Procedural Goals

During the first step of practical reasoning, i.e. deliberation, an intelligent agent generates a set of pursuable goals and then selects which of them he commits to achieve. An intelligent agent may in general generate multiple pursuable goals, which may be incompatible among them. In this paper, we focus on the definition, identification and resolution of these incompatibilities. The suggested approach considers the three forms of incompatibility introduced by Castelfranchi and Paglieri, namely the terminal incompatibility, the instrumental or resources incompatibility and the superfluity. We characterise computationally these forms of incompatibility by means of arguments that represent the plans that allow an agent to achieve his goals. Thus, the incompatibility among goals is defined based on the conflicts among their plans, which are represented by means of attacks in an argumentation framework. We also work on the problem of goals selection; we propose to use abstract argumentation theory to deal with this problem, i.e. by applying argumentation semantics. We use a modified version of the "cleaner world" scenario in order to illustrate the performance of our proposal.

Read more
Artificial Intelligence

An Autonomous Negotiating Agent Framework with Reinforcement Learning Based Strategies and Adaptive Strategy Switching Mechanism

Despite abundant negotiation strategies in literature, the complexity of automated negotiation forbids a single strategy from being dominant against all others in different negotiation scenarios. To overcome this, one approach is to use mixture of experts, but at the same time, one problem of this method is the selection of experts, as this approach is limited by the competency of the experts selected. Another problem with most negotiation strategies is their incapability of adapting to dynamic variation of the opponent's behaviour within a single negotiation session resulting in poor performance. This work focuses on both, solving the problem of expert selection and adapting to the opponent's behaviour with our Autonomous Negotiating Agent Framework. This framework allows real-time classification of opponent's behaviour and provides a mechanism to select, switch or combine strategies within a single negotiation session. Additionally, our framework has a reviewer component which enables self-enhancement capability by deciding to include new strategies or replace old ones with better strategies periodically. We demonstrate an instance of our framework by implementing maximum entropy reinforcement learning based strategies with a deep learning based opponent classifier. Finally, we evaluate the performance of our agent against state-of-the-art negotiators under varied negotiation scenarios.

Read more
Artificial Intelligence

An Efficient Diagnosis Algorithm for Inconsistent Constraint Sets

Constraint sets can become inconsistent in different contexts. For example, during a configuration session the set of customer requirements can become inconsistent with the configuration knowledge base. Another example is the engineering phase of a configuration knowledge base where the underlying constraints can become inconsistent with a set of test cases. In such situations we are in the need of techniques that support the identification of minimal sets of faulty constraints that have to be deleted in order to restore consistency. In this paper we introduce a divide-and-conquer based diagnosis algorithm (FastDiag) which identifies minimal sets of faulty constraints in an over-constrained problem. This algorithm is specifically applicable in scenarios where the efficient identification of leading (preferred) diagnoses is crucial. We compare the performance of FastDiag with the conflict-directed calculation of hitting sets and present an in-depth performance analysis that shows the advantages of our approach.

Read more
Artificial Intelligence

An Empirical Comparison of Deep Learning Models for Knowledge Tracing on Large-Scale Dataset

Knowledge tracing (KT) is the problem of modeling each student's mastery of knowledge concepts (KCs) as (s)he engages with a sequence of learning activities. It is an active research area to help provide learners with personalized feedback and materials. Various deep learning techniques have been proposed for solving KT. Recent release of large-scale student performance dataset \cite{choi2019ednet} motivates the analysis of performance of deep learning approaches that have been proposed to solve KT. Our analysis can help understand which method to adopt when large dataset related to student performance is available. We also show that incorporating contextual information such as relation between exercises and student forget behavior further improves the performance of deep learning models.

Read more
Artificial Intelligence

An Entropic Associative Memory

Natural memories are associative, declarative and distributed. Symbolic computing memories resemble natural memories in their declarative character, and information can be stored and recovered explicitly; however, they lack the associative and distributed properties of natural memories. Sub-symbolic memories developed within the connectionist or artificial neural networks paradigm are associative and distributed, but are unable to express symbolic structure and information cannot be stored and retrieved explicitly; hence, they lack the declarative property. To address this dilemma, we use Relational-Indeterminate Computing to model associative memory registers that hold distributed representations of individual objects. This mode of computing has an intrinsic computing entropy which measures the indeterminacy of representations. This parameter determines the operational characteristics of the memory. Associative registers are embedded in an architecture that maps concrete images expressed in modality-specific buffers into abstract representations, and vice versa, and the memory system as a whole fulfills the three properties of natural memories. The system has been used to model a visual memory holding the representations of hand-written digits, and recognition and recall experiments show that there is a range of entropy values, not too low and not too high, in which associative memory registers have a satisfactory performance. The similarity between the cue and the object recovered in memory retrieve operations depends on the entropy of the memory register holding the representation of the corresponding object. The experiments were implemented in a simulation using a standard computer, but a parallel architecture may be built where the memory operations would take a very reduced number of computing steps.

Read more
Artificial Intelligence

An Explainable Artificial Intelligence Approach for Unsupervised Fault Detection and Diagnosis in Rotating Machinery

The monitoring of rotating machinery is an essential task in today's production processes. Currently, several machine learning and deep learning-based modules have achieved excellent results in fault detection and diagnosis. Nevertheless, to further increase user adoption and diffusion of such technologies, users and human experts must be provided with explanations and insights by the modules. Another issue is related, in most cases, with the unavailability of labeled historical data that makes the use of supervised models unfeasible. Therefore, a new approach for fault detection and diagnosis in rotating machinery is here proposed. The methodology consists of three parts: feature extraction, fault detection and fault diagnosis. In the first part, the vibration features in the time and frequency domains are extracted. Secondly, in the fault detection, the presence of fault is verified in an unsupervised manner based on anomaly detection algorithms. The modularity of the methodology allows different algorithms to be implemented. Finally, in fault diagnosis, Shapley Additive Explanations (SHAP), a technique to interpret black-box models, is used. Through the feature importance ranking obtained by the model explainability, the fault diagnosis is performed. Two tools for diagnosis are proposed, namely: unsupervised classification and root cause analysis. The effectiveness of the proposed approach is shown on three datasets containing different mechanical faults in rotating machinery. The study also presents a comparison between models used in machine learning explainability: SHAP and Local Depth-based Feature Importance for the Isolation Forest (Local- DIFFI). Lastly, an analysis of several state-of-art anomaly detection algorithms in rotating machinery is included.

Read more
Artificial Intelligence

An Imprecise Probability Approach for Abstract Argumentation based on Credal Sets

Some abstract argumentation approaches consider that arguments have a degree of uncertainty, which impacts on the degree of uncertainty of the extensions obtained from a abstract argumentation framework (AAF) under a semantics. In these approaches, both the uncertainty of the arguments and of the extensions are modeled by means of precise probability values. However, in many real life situations the exact probabilities values are unknown and sometimes there is a need for aggregating the probability values of different sources. In this paper, we tackle the problem of calculating the degree of uncertainty of the extensions considering that the probability values of the arguments are imprecise. We use credal sets to model the uncertainty values of arguments and from these credal sets, we calculate the lower and upper bounds of the extensions. We study some properties of the suggested approach and illustrate it with an scenario of decision making.

Read more

Ready to get started?

Join us today