Featured Researches

Graphics

FTK: A Simplicial Spacetime Meshing Framework for Robust and Scalable Feature Tracking

We present the Feature Tracking Kit (FTK), a framework that simplifies, scales, and delivers various feature-tracking algorithms for scientific data. The key of FTK is our high-dimensional simplicial meshing scheme that generalizes both regular and unstructured spatial meshes to spacetime while tessellating spacetime mesh elements into simplices. The benefits of using simplicial spacetime meshes include (1) reducing ambiguity cases for feature extraction and tracking, (2) simplifying the handling of degeneracies using symbolic perturbations, and (3) enabling scalable and parallel processing. The use of simplicial spacetime meshing simplifies and improves the implementation of several feature-tracking algorithms for critical points, quantum vortices, and isosurfaces. As a software framework, FTK provides end users with VTK/ParaView filters, Python bindings, a command line interface, and programming interfaces for feature-tracking applications. We demonstrate use cases as well as scalability studies through both synthetic data and scientific applications including Tokamak, fluid dynamics, and superconductivity simulations. We also conduct end-to-end performance studies on the Summit supercomputer. FTK is open-sourced under the MIT license: this https URL

Read more
Graphics

Farthest sampling segmentation of triangulated surfaces

In this paper we introduce Farthest Sampling Segmentation (FSS), a new method for segmentation of triangulated surfaces, which consists of two fundamental steps: the computation of a submatrix W k of the affinity matrix W and the application of the k-means clustering algorithm to the rows of W k . The submatrix W k is obtained computing the affinity between all triangles and only a few special triangles: those which are farthest in the defined metric. This is equivalent to select a sample of columns of W without constructing it completely. The proposed method is computationally cheaper than other segmentation algorithms, since it only calculates few columns of W and it does not require the eigendecomposition of W or of any submatrix of W . We prove that the orthogonal projection of W on the space generated by the columns of W k coincides with the orthogonal projection of W on the space generated by the k eigenvectors computed by Nyström's method using the columns of W k as a sample of W . Further, it is shown that for increasing size k , the proximity relationship among the rows of W k tends to faithfully reflect the proximity among the corresponding rows of W . The FSS method does not depend on parameters that must be tuned by hand and it is very flexible, since it can handle any metric to define the distance between triangles. Numerical experiments with several metrics and a large variety of 3D triangular meshes show that the segmentations obtained computing less than the 10% of columns W are as good as those obtained from clustering the rows of the full matrix W .

Read more
Graphics

Fast 3D Indoor Scene Synthesis with Discrete and Exact Layout Pattern Extraction

We present a fast framework for indoor scene synthesis, given a room geometry and a list of objects with learnt priors. Unlike existing data-driven solutions, which often extract priors by co-occurrence analysis and statistical model fitting, our method measures the strengths of spatial relations by tests for complete spatial randomness (CSR), and extracts complex priors based on samples with the ability to accurately represent discrete layout patterns. With the extracted priors, our method achieves both acceleration and plausibility by partitioning input objects into disjoint groups, followed by layout optimization based on the Hausdorff metric. Extensive experiments show that our framework is capable of measuring more reasonable relations among objects and simultaneously generating varied arrangements in seconds.

Read more
Graphics

Fast Tetrahedral Meshing in the Wild

We propose a new tetrahedral meshing method, fTetWild, to convert triangle soups into high-quality tetrahedral meshes. Our method builds on the TetWild algorithm, replacing the rational triangle insertion with a new incremental approach to construct and optimize the output mesh, interleaving triangle insertion and mesh optimization. Our approach makes it possible to maintain a valid floating-point tetrahedral mesh at all algorithmic stages, eliminating the need for costly constructions with rational numbers used by TetWild, while maintaining full robustness and similar output quality. This allows us to improve on TetWild in two ways. First, our algorithm is significantly faster, with running time comparable to less robust Delaunay-based tetrahedralization algorithms. Second, our algorithm is guaranteed to produce a valid tetrahedral mesh with floating-point vertex coordinates, while TetWild produces a valid mesh with rational coordinates which is not guaranteed to be valid after floating-point conversion. As a trade-off, our algorithm no longer guarantees that all input triangles are present in the output mesh, but in practice, as confirmed by our tests on the Thingi10k dataset, the algorithm always succeeds in inserting all input triangles.

Read more
Graphics

Fat Pad Cages for Facial Posing

We introduce Fat Pad cages for posing facial meshes. It combines cage representation and facial anatomical elements, and enables users with no artistic skill to quickly sketch realistic facial expressions. The model relies on one or several cage(s) that deform(s) the mesh following the human fat pads map. We propose a new function to filter Green Coordinates using geodesic distances preventing global deformation while ensuring smooth deformations at the borders. Lips, nostrils and eyelids are processed slightly differently to allow folding up and opening. Cages are automatically created and fit any new unknown facial mesh. To validate our approach, we present a user study comparing our Fat Pad cages to regular Green Coordinates. Results show that Fat Pad cages bring a significant improvement in reproducing existing facial expressions.

Read more
Graphics

Federated Visualization: A Privacy-preserving Strategy for Decentralized Visualization

We present a novel privacy preservation strategy for decentralized visualization. The key idea is to imitate the flowchart of the federated learning framework, and reformulate the visualization process within a federated infrastructure. The federation of visualization is fulfilled by leveraging a shared global module that composes the encrypted externalizations of transformed visual features of data pieces in local modules. We design two implementations of federated visualization: a prediction-based scheme, and a query-based scheme. We demonstrate the effectiveness of our approach with a set of visual forms, and verify its robustness with evaluations. We report the value of federated visualization in real scenarios with an expert review.

Read more
Graphics

FibAR: Embedding Optical Fibers in 3D Printed Objects for Active Markers in Dynamic Projection Mapping

This paper presents a novel active marker for dynamic projection mapping (PM) that emits a temporal blinking pattern of infrared (IR) light representing its ID. We used a multi-material three dimensional (3D) printer to fabricate a projection object with optical fibers that can guide IR light from LEDs attached on the bottom of the object. The aperture of an optical fiber is typically very small; thus, it is unnoticeable to human observers under projection and can be placed on a strongly curved part of a projection surface. In addition, the working range of our system can be larger than previous marker-based methods as the blinking patterns can theoretically be recognized by a camera placed at a wide range of distances from markers. We propose an automatic marker placement algorithm to spread multiple active markers over the surface of a projection object such that its pose can be robustly estimated using captured images from arbitrary directions. We also propose an optimization framework for determining the routes of the optical fibers in such a way that collisions of the fibers can be avoided while minimizing the loss of light intensity in the fibers. Through experiments conducted using three fabricated objects containing strongly curved surfaces, we confirmed that the proposed method can achieve accurate dynamic PMs in a significantly wide working range.

Read more
Graphics

Flexible SVBRDF Capture with a Multi-Image Deep Network

Empowered by deep learning, recent methods for material capture can estimate a spatially-varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization-based approaches. However, a single image is often simply not enough to observe the rich appearance of real-world materials. We present a deep-learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order-independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images -- a sweet spot between existing single-image and complex multi-image approaches.

Read more
Graphics

Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement

As life expectancy is mostly increasing, the incidence of many neurological disorders is also constantly growing. For improving the physical functions affected by a neurological disorder, rehabilitation procedures are mandatory, and they must be performed regularly. Unfortunately, neurorehabilitation procedures have disadvantages in terms of costs, accessibility and a lack of therapists. This paper presents Immersive Neurorehabilitation Exercises Using Virtual Reality (INREX-VR), our innovative immersive neurorehabilitation system using virtual reality. The system is based on a thorough research methodology and is able to capture real-time user movements and evaluate joint mobility for both upper and lower limbs, record training sessions and save electromyography data. The use of the first-person perspective increases immersion, and the joint range of motion is calculated with the help of both the HTC Vive system and inverse kinematics principles applied on skeleton rigs. Tutorial exercises are demonstrated by a virtual therapist, as they were recorded with real-life physicians, and sessions can be monitored and configured through tele-medicine. Complex movements are practiced in gamified settings, encouraging self-improvement and competition. Finally, we proposed a training plan and preliminary tests which show promising results in terms of accuracy and user feedback. As future developments, we plan to improve the system's accuracy and investigate a wireless alternative based on neural networks.

Read more
Graphics

Functionality-Driven Musculature Retargeting

We present a novel retargeting algorithm that transfers the musculature of a reference anatomical model to new bodies with different sizes, body proportions, muscle capability, and joint range of motion while preserving the functionality of the original musculature as closely as possible. The geometric configuration and physiological parameters of musculotendon units are estimated and optimized to adapt to new bodies. The range of motion around joints is estimated from a motion capture dataset and edited further for individual models. The retargeted model is simulation-ready, so we can physically simulate muscle-actuated motor skills with the model. Our system is capable of generating a wide variety of anatomical bodies that can be simulated to walk, run, jump and dance while maintaining balance under gravity. We will also demonstrate the construction of individualized musculoskeletal models from bi-planar X-ray images and medical examinations.

Read more

Ready to get started?

Join us today