Featured Researches

Graphics

Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation

Online semantic 3D segmentation in company with real-time RGB-D reconstruction poses special challenges such as how to perform 3D convolution directly over the progressively fused 3D geometric data, and how to smartly fuse information from frame to frame. We propose a novel fusion-aware 3D point convolution which operates directly on the geometric surface being reconstructed and exploits effectively the inter-frame correlation for high quality 3D feature learning. This is enabled by a dedicated dynamic data structure which organizes the online acquired point cloud with global-local trees. Globally, we compile the online reconstructed 3D points into an incrementally growing coordinate interval tree, enabling fast point insertion and neighborhood query. Locally, we maintain the neighborhood information for each point using an octree whose construction benefits from the fast query of the global tree.Both levels of trees update dynamically and help the 3D convolution effectively exploits the temporal coherence for effective information fusion across RGB-D frames.

Read more
Graphics

G 1 hole filling with S-patches made easy

S-patches have been around for 30 years, but they are seldom used, and are considered more of a mathematical curiosity than a practical surface representation. In this article a method is presented for automatically creating S-patches of any degree or any number of sides, suitable for inclusion in a curve network with tangential continuity to the adjacent surfaces. The presentation aims at making the implementation straightforward; a few examples conclude the paper.

Read more
Graphics

GLoG: Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data

Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static and time-varying data. In this work, we built upon the theory of Graph Signal Processing to propose a novel boundary detection filter in the context of graphs, having as main application scenario the visual analysis of spatio-temporal data. More specifically, we propose the equivalent for graphs of the so-called Laplacian of Gaussian edge detection filter, which is widely used in image processing. The proposed filter is able to reveal interesting spatial patterns while still enabling the definition of entropy of time slices. The entropy reveals the degree of randomness of a time slice, helping users to identify expected and unexpected phenomena over time. The effectiveness of our approach appears in applications involving synthetic and real data sets, which show that the proposed methodology is able to uncover interesting spatial and temporal phenomena. The provided examples and case studies make clear the usefulness of our approach as a mechanism to support visual analytic tasks involving spatio-temporal data.

Read more
Graphics

GPU Optimization for High-Quality Kinetic Fluid Simulation

Fluid simulations are often performed using the incompressible Navier-Stokes equations (INSE), leading to sparse linear systems which are difficult to solve efficiently in parallel. Recently, kinetic methods based on the adaptive-central-moment multiple-relaxation-time (ACM-MRT) model have demonstrated impressive capabilities to simulate both laminar and turbulent flows, with quality matching or surpassing that of state-of-the-art INSE solvers. Furthermore, due to its local formulation, this method presents the opportunity for highly scalable implementations on parallel systems such as GPUs. However, an efficient ACM-MRT-based kinetic solver needs to overcome a number of computational challenges, especially when dealing with complex solids inside the fluid domain. In this paper, we present multiple novel GPU optimization techniques to efficiently implement high-quality ACM-MRT-based kinetic fluid simulations in domains containing complex solids. Our techniques include a new communication-efficient data layout, a load-balanced immersed-boundary method, a multi-kernel launch method using a simplified formulation of ACM-MRT calculations to enable greater parallelism, and the integration of these techniques into a parametric cost model to enable automated parameter search to achieve optimal execution performance. We also extended our method to multi-GPU systems to enable large-scale simulations. To demonstrate the state-of-the-art performance and high visual quality of our solver, we present extensive experimental results and comparisons to other solvers.

Read more
Graphics

GPU Parallel Computation of Morse-Smale Complexes

The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior of a scalar function. It supports multi-scale topological analysis and visualization of large scientific data. Its computation poses significant algorithmic challenges when considering large scale data and increased feature complexity. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. The non-trivial structure of the saddle-saddle connections are not amenable to parallel computation. This paper describes a fine grained parallel method for computing the Morse-Smale complex that is implemented on a GPU. The saddle-saddle reachability is first determined via a transformation into a sequence of vector operations followed by the path traversal, which is achieved via a sequence of matrix operations. Computational experiments show that the method achieves up to 7x speedup over current shared memory implementations.

Read more
Graphics

Gaussian Curvature Filter on 3D Meshes

Minimizing the Gaussian curvature of meshes can play a fundamental role in 3D mesh processing. However, there is a lack of computationally efficient and robust Gaussian curvature optimization method. In this paper, we present a simple yet effective method that can efficiently reduce Gaussian curvature for 3D meshes. We first present the mathematical foundation of our method. Then, we introduce a simple and robust implicit Gaussian curvature optimization method named Gaussian Curvature Filter (GCF). GCF implicitly minimizes Gaussian curvature without the need to explicitly calculate the Gaussian curvature itself. GCF is highly efficient and this method can be used in a large range of applications that involve Gaussian curvature. We conduct extensive experiments to demonstrate that GCF significantly outperforms state-of-the-art methods in minimizing Gaussian curvature, and geometric feature preserving soothing on 3D meshes. GCF program is available at this https URL.

Read more
Graphics

Gaze-Contingent Ocular Parallax Rendering for Virtual Reality

Immersive computer graphics systems strive to generate perceptually realistic user experiences. Current-generation virtual reality (VR) displays are successful in accurately rendering many perceptually important effects, including perspective, disparity, motion parallax, and other depth cues. In this article, we introduce ocular parallax rendering, a technology that accurately renders small amounts of gaze-contingent parallax capable of improving depth perception and realism in VR. Ocular parallax describes the small amounts of depth-dependent image shifts on the retina that are created as the eye rotates. The effect occurs because the centers of rotation and projection of the eye are not the same. We study the perceptual implications of ocular parallax rendering by designing and conducting a series of user experiments. Specifically, we estimate perceptual detection and discrimination thresholds for this effect and demonstrate that it is clearly visible in most VR applications. Additionally, we show that ocular parallax rendering provides an effective ordinal depth cue and it improves the impression of realistic depth in VR.

Read more
Graphics

GenFloor: Interactive Generative Space Layout System via Encoded Tree Graphs

Automated floorplanning or space layout planning has been a long-standing NP-hard problem in the field of computer-aided design, with applications in integrated circuits, architecture, urbanism, and operational research. In this paper, we introduce GenFloor, an interactive design system that takes geometrical, topological, and performance goals and constraints as input and provides optimized spatial design solutions as output. As part of our work, we propose three novel permutation methods for existing space layout graph representations, namely O-Tree and B*-Tree representations. We implement our proposed floorplanning methods as a package for Dynamo, a visual programming tool, with a custom GUI and additional evaluation functionalities to facilitate designers in their generative design workflow. Furthermore, we illustrate the performance of GenFloor in two sets of case-study experiments for residential floorplanning tasks by (a) measuring the ability of the proposed system to find a known optimal solution, and (b) observing how the system can generate diverse floorplans while addressing given a constant residential design problem. Our results indicate convergence to the global optimum is achieved while offering a diverse set of solutions of a residential floorplan corresponding to the Pareto-optimums of the solution landscape.

Read more
Graphics

Generating Emotive Gaits for Virtual Agents Using Affect-Based Autoregression

We present a novel autoregression network to generate virtual agents that convey various emotions through their walking styles or gaits. Given the 3D pose sequences of a gait, our network extracts pertinent movement features and affective features from the gait. We use these features to synthesize subsequent gaits such that the virtual agents can express and transition between emotions represented as combinations of happy, sad, angry, and neutral. We incorporate multiple regularizations in the training of our network to simultaneously enforce plausible movements and noticeable emotions on the virtual agents. We also integrate our approach with an AR environment using a Microsoft HoloLens and can generate emotive gaits at interactive rates to increase the social presence. We evaluate how human observers perceive both the naturalness and the emotions from the generated gaits of the virtual agents in a web-based study. Our results indicate around 89% of the users found the naturalness of the gaits satisfactory on a five-point Likert scale, and the emotions they perceived from the virtual agents are statistically similar to the intended emotions of the virtual agents. We also use our network to augment existing gait datasets with emotive gaits and will release this augmented dataset for future research in emotion prediction and emotive gait synthesis. Our project website is available at this https URL.

Read more
Graphics

Generation High resolution 3D model from natural language by Generative Adversarial Network

We present a method of generating high resolution 3D shapes from natural language descriptions. To achieve this goal, we propose two steps that generating low resolution shapes which roughly reflect texts and generating high resolution shapes which reflect the detail of texts. In a previous paper, the authors have shown a method of generating low resolution shapes. We improve it to generate 3D shapes more faithful to natural language and test the effectiveness of the method. To generate high resolution 3D shapes, we use the framework of Conditional Wasserstein GAN. We propose two roles of Critic separately, which calculate the Wasserstein distance between two probability distribution, so that we achieve generating high quality shapes or acceleration of learning speed of model. To evaluate our approach, we performed quantitive evaluation with several numerical metrics for Critic models. Our method is first to realize the generation of high quality model by propagating text embedding information to high resolution task when generating 3D model.

Read more

Ready to get started?

Join us today