Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. B. C. Patzer is active.

Publication


Featured researches published by A. B. C. Patzer.


Astronomy and Astrophysics | 2010

Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones

D Kitzmann; A. B. C. Patzer; P von Paris; Mareike Godolt; Barbara Stracke; S Gebauer; J L Grenfell; H. Rauer

The effects of multi-layered clouds in the atmospheres of Earth-like planets orbiting different types of stars are studied. The radiative effects of cloud particles are directly correlated with their wavelength-dependent optical properties. Therefore the incident stellar spectra may play an important role for the climatic effect of clouds. We discuss the influence of clouds with mean properties measured in the Earths atmosphere on the surface temperatures and Bond albedos of Earth-like planets orbiting different types of main sequence dwarf stars.


Icarus | 2011

Sensitivity of Biomarkers to Changes in Chemical Emissions in the Earth's Proterozoic Atmosphere

J L Grenfell; S Gebauer; P von Paris; M Godolt; Pascal Hedelt; A. B. C. Patzer; Barbara Stracke; H. Rauer

Abstract The search for life beyond the Solar System is a major activity in exoplanet science. However, even if an Earth-like planet were to be found, it is unlikely to be at a similar stage of evolution as the modern Earth. It is therefore of interest to investigate the sensitivity of biomarker signals for life as we know it for an Earth-like planet but at earlier stages of evolution. Here, we assess biomarkers, i.e. species almost exclusively associated with life, in present-day and in 10% present atmospheric level oxygen atmospheres corresponding to the Earth’s Proterozoic period. We investigate the impact of proposed enhanced microbial emissions of the biomarker nitrous oxide, which photolyses to form nitrogen oxides which can destroy the biomarker ozone. A major result of our work is regardless of the microbial activity producing nitrous oxide in the early anoxic ocean, a certain minimum ozone column can be expected to persist in Proterozoic-type atmospheres due to a stabilising feedback loop between ozone, nitrous oxide and the ultraviolet radiation field. Atmospheric nitrous oxide columns were enhanced by a factor of 51 for the Proterozoic “Canfield ocean” scenario with 100 times increased nitrous oxide surface emissions. In such a scenario nitrous oxide displays prominent spectral features, so may be more important as a biomarker than previously considered in such cases. The run with “Canfield ocean” nitrous oxide emissions enhanced by a factor of 100 also featured additional surface warming of 3.5xa0K. Our results suggest that the Proterozoic ozone layer mostly survives the changes in composition which implies that it is indeed a good atmospheric biomarker.


Astronomy and Astrophysics | 2011

Clouds in the atmospheres of extrasolar planets - II. Thermal emission spectra of Earth-like planets influenced by low and high-level clouds

D Kitzmann; A. B. C. Patzer; P von Paris; M Godolt; H. Rauer

Aims. We study the impact of multi-layered clouds (low-level water and high-level ice clouds) on the thermal emission spectra of Earth-like planets orbiting different types of stars. Clouds have an important influence on such planetary emission spectra due to their wavelength dependent absorption and scattering properties. We also investigate the influence of clouds on the ability to derive information about planetary surface temperatures from low-resolution spectra. Methods. We use a previously developed parametric cloud model based on observations in the Earth’s atmosphere, coupled to a onedimensional radiative-convective steady state climate model. This model is applied here to study the effect of clouds on the thermal emission spectra of Earth-like extrasolar planets in dependence of the type of central star. Results. The presence of clouds lead in general to a decrease of the planetary IR spectrum associated with the dampening of spectral absorption features such as the 9.6 µm absorption band of O3 for example. This dampening is not limited to absorption features originating below the cloud layers but was also found for features forming above the clouds. When only single cloud layers are considered, both cloud types exhibit basically the same effects on the spectrum but the underlying physical processes are clearly different. For model scenarios where multi-layered clouds have been considered with coverages which yield mean Earth surface temperatures, the low-level clouds have only a small influence on the thermal emission spectra. In these cases the major differences are caused by highlevel ice clouds. The largest effect was found for a planet orbiting the F-type star, where no absorption features can be distinguished in the low-resolution emission spectrum for high cloud coverages. However, for most central stars, planetary atmospheric absorption bands are present even at high cloud coverages. Clouds also affect the derivation of surface temperatures from low-resolution spectra when fitting black-body radiation curves to the spectral shape of the IR emission spectra. With increasing amount of high-level clouds the derived temperatures increasingly under-estimate the real planetary surface temperatures. Consequently, clouds can alter significantly the measured apparent temperature of a planet as well as the detectability of the characteristic spectral signatures in the infrared. Therefore, planets with observationally derived somewhat lower surface temperatures should not be discarded too quickly from the list of potential habitable planets before further investigations on the presence of clouds have been made.


Astronomy and Astrophysics | 2010

The extrasolar planet Gliese 581d: a potentially habitable planet?

P von Paris; S Gebauer; Mareike Godolt; J L Grenfell; Pascal Hedelt; D Kitzmann; A. B. C. Patzer; H. Rauer; Barbara Stracke

Aims. The planetary system around the M star Gliese 581 contains at least three close-in potentially low-mass planets, Gl 581c, d, and e. In order to address the question of the habitability of Gl 581d, we performed detailed atmospheric modeling studies for several planetary scenarios. Methods. A 1D radiative-convective model was used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. The model allows for changing surface pressures caused by evaporation/condensation of water and carbon dioxide. Furthermore, the treatment of the energy transport has been improved in the model to account in particular for high CO2, high-pressure Super-Earth conditions. Results. For four high-pressure scenarios of our study, the resulting surface temperatures were above 273 K, indicating a potential habitability of the planet. These scenarios include three CO2-dominated atmospheres (95% CO2 concentration with 5, 10, and 20 bar surface pressure) and a high-pressure CO2-enriched atmosphere (5% CO2 concentration with 20 bar surface pressure). For all other considered scenarios, the calculated Gl 581d surface temperatures were below the freezing point of water, suggesting that Gl 581d would not be habitable then. The results for our CO2-dominated scenarios confirm very recent model results by Wordsworth et al. (2010). However, our model calculations imply that also atmospheres that are not CO2-dominated (i.e., 5% vmr instead of 95% vmr) could result in habitable conditions for Gl 581d.


Astronomy and Astrophysics | 2013

Clouds in the atmospheres of extrasolar planets - IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

D Kitzmann; A. B. C. Patzer; H. Rauer

Context. Owing to their wavelength-dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. The potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Such a greenhouse effect, however, is a complicated function of the CO2 ice particles’ optical properties. n nAims. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. To determine the effectiveness of the scattering greenhouse effect caused by CO2 ice clouds, the radiative transfer calculations are performed over the relevant wide range of particle sizes and optical depths, employing different numerical methods. n nMethods. We used Mie theory to calculate the optical properties of particle polydispersion. The radiative transfer calculations were done with a high-order discrete ordinate method (DISORT). Two-stream radiative transfer methods were used for comparison with previous studies. n nResults. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf, the CO2 ice particles show no strong effective scattering greenhouse effect by using the high-order discrete ordinate method, whereas a positive net greenhouse effect was found for the two-stream radiative transfer schemes. As a result, previous studies of the effects of CO2 ice clouds using two-stream approximations overrated the atmospheric warming caused by the scattering greenhouse effect. Consequently, the scattering greenhouse effect of CO2 ice particles seems to be less effective than previously estimated. In general, higher order radiative transfer methods are needed to describe the effects of CO2 ice clouds accurately as indicated by our numerical radiative transfer studies.


Planetary and Space Science | 2015

3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars

Mareike Godolt; John Lee Grenfell; A Hamann-Reinus; D Kitzmann; Markus Kunze; Ulrike Langematz; P von Paris; A. B. C. Patzer; H. Rauer; Barbara Stracke

Abstract The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface, since life as we know it needs liquid water at least during a part of its life cycle. The potential presence of liquid water on a planetary surface depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planets host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars (F, G, and K-type stars) upon the climate of Earth-like extrasolar planets and their potential habitability by applying a state-of-the-art three-dimensional (3D) Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances (and corresponding orbital periods) where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results obtained have been compared to those of a one-dimensional (1D) radiative convective climate model to investigate the approximation of global mean 3D results by those of 1D models. The different stellar spectral energy distributions lead to different surface temperatures and due to ozone heating to very different vertical temperature structures. As previous 1D studies we find higher surface temperatures for the Earth-like planet around the K-type star, and lower temperatures for the planet around the F-type star compared to an Earth-like planet around the Sun. However, this effect is more pronounced in the 3D model results than in the 1D model because the 3D model accounts for feedback processes such as the ice-albedo and the water vapor feedback. Whether the 1D model may approximate the global mean of the 3D model results strongly depends on the choice of the relative humidity profile in the 1D model, which is used to determine the water vapor profile. Hence, possible changes in the hydrological cycle need to be accounted for when estimating the potential habitability of an extrasolar planet.


Monthly Notices of the Royal Astronomical Society | 2015

The unstable CO2 feedback cycle on ocean planets

Daniel Kitzmann; Yann Alibert; Mareike Godolt; John Lee Grenfell; Kevin Heng; A. B. C. Patzer; H. Rauer; Barbara Stracke; P. von Paris

Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planets surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.


Astronomy and Astrophysics | 2011

Clouds in the atmospheres of extrasolar planets - III. Impact of low and high-level clouds on the reflection spectra of Earth-like planets

D Kitzmann; A. B. C. Patzer; P von Paris; M Godolt; H. Rauer

Context. Owing to their wavelength dependent absorption and scattering properties, clouds have an important influence on spectral albedos and planetary reflection spectra. In addition, the spectral energy distribution of the incident stellar light determines the detectable absorption bands of atmospheric molecules in these reflection spectra. Aims. We study the influence of low-level water and high-level ice clouds on low-resolution reflection spectra and planetary albedos of Earth-like planets orbiting different types of stars in both the visible and near infrared wavelength range. Methods. We use a one-dimensional radiative-convective steady-state atmospheric model coupled with a parametric cloud model, based on observations in the Earth’s atmosphere to study the effect of both cloud types on the reflection spectra and albedos of Earthlike extrasolar planets at low resolution for various types of central stars. Results. We find that the high scattering efficiency of clouds causes both the amount of reflected light and the related depths of the absorption bands to be substantially larger than in comparison to the respective clear sky conditions. Low-level clouds have a stronger impact on the spectra than the high-level clouds because of their much larger scattering optical depth. The detectability of molecular features in near the UV – near IR wavelength range is strongly enhanced by the presence of clouds. However, the detectability of various chemical species in low-resolution reflection spectra depends strongly on the spectral energy distribution of the incident stellar radiation. In contrast to the reflection spectra the spectral planetary albedos enable molecular features to be detected without a direct influence of the spectral energy distribution of the stellar radiation. Here, clouds increase the contrast between the radiation fluxes of the planets and the respective central star by about one order of magnitude, but the resulting contrast values are still too low to be observable with the current generation of telescopes.


Planetary and Space Science | 1995

Primary astrophysical dust formation: laboratory desiderata

A. B. C. Patzer; T.M. Köhler; E. Sedlmayr

Abstract The theoretical treatment of primary cosmic dust formation suggests specific laboratory experiments concerning all aspects of the molecule-solid transition along the evolution from molecules via clusters up to macroscopic grains. Based upon the theoretical description of chemistry and dust formation processes, we discuss the specific laboratory desiderata on input data like reaction coefficients, Gibbs energies of formation and sticking efficiencies for atoms and molecules involved in primary astrophysical dust formation.


Astronomy and Astrophysics | 2016

Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

Mareike Godolt; John Lee Grenfell; Daniel Kitzmann; M. Kunze; Ulrike Langematz; A. B. C. Patzer; H. Rauer; Barbara Stracke

The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most 1D models. We compared the results to those of 3D model calculations in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When treating the surface albedo and the relative humidity profile as parameters in 1D model studies and using the habitability constraints found by recent 3D modeling studies, the same conclusions about the potential habitability of a planet can be drawn as from 3D model calculations.

Collaboration


Dive into the A. B. C. Patzer's collaboration.

Top Co-Authors

Avatar

H. Rauer

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

D Kitzmann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P von Paris

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

J L Grenfell

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

M Godolt

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Gebauer

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge