M Godolt
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M Godolt.
Astronomy and Astrophysics | 2011
H. Rauer; S Gebauer; Philip von Paris; J. Cabrera; M Godolt; J L Grenfell; A. R. Belu; Franck Selsis; P. Hedelt; Franz Schreier
Atmospheric temperature and mixing ratio profiles of terres trial planets vary with the spectral energy flux distribution for di fferent types of M-dwarf stars and the planetary gravity. We investigate the resulting effects on the spectral appearance of molecular absorption bands, which are relevant as indicators for potential planetary habitability during primary and secondary eclipse for transiting terrestrial planets with Earth-like biomass emissi ons. Atmospheric profiles are computed using a plane-parallel, 1D climate model coupled with a chemistry model. We then calculate simulated spectra using a line-by-line radiative transfer model. We find that emission spectra during secondary eclipse show i ncreasing absorption of methane, water, and ozone for planets orbiting quiet M0-M3 dwarfs and the active M-type star AD Leo compared with solar-type central stars. However, for planets orbiting very cool and quiet M dwarfs (M4 to M7), increasing temperatures in the mid-atmosphere lead to reduced absorption signals, which impedes the detection of molecules in these scenarios. Transmission spectra during primary eclipse show strong absorption features of CH4, N2O and H2O for planets orbiting quiet M0-M7 stars and AD Leo. The N2O absorption of an Earth-sized planet orbiting a quiet M7 star can even be as strong as the CO2 signal. However, ozone absorption decreases for planets orbiting these cool central stars owing to chemical effects in the atmosphere. To investigate the effect on the spectroscopic detection of absorption bands with potential future satellite missions, we compute signal-to-noise-ratios (SNR) for a James Webb Space Telescope (JWST)-like aperture telescope.
Astronomy and Astrophysics | 2013
Pascal Hedelt; P von Paris; M Godolt; S Gebauer; J L Grenfell; H. Rauer; Franz Schreier; Franck Selsis; Thomas Trautmann
Context. In recent years, more and more transiting terrestrial extrasolar planets have been found. Spectroscopy already yielded the detection of molecular absorption bands in the atmospheres of Jupiter and Neptune-sized exoplanets. Detecting spectral features in the atmosphere of terrestrial planets is the next great challenge for exoplanet characterization. Aims. We investigate the spectral appearance of Earth-like exoplanets in the habitable zone (HZ) of different main sequence (F, G, and K-type) stars at different orbital distances. We furthermore discuss for which of these scenarios biomarker absorption bands and related compounds may be detected during primary or secondary transit with near-future telescopes and instruments. Methods. Atmospheric profiles from a 1D cloud-free atmospheric climate-photochemistry model were used to compute primary and secondary eclipse infrared spectra. The spectra were analyzed taking into account different filter bandpasses of two photometric instruments planned to be mounted to the James Webb Space Telescope (JWST). We analyzed in which filters and for which scenarios molecular absorption bands are detectable when using the space-borne JWST or the ground-based European Extremely Large Telescope (E-ELT). Results. Absorption bands of carbon dioxide (CO2), water (H2O), methane (CH4) and ozone (O3) are clearly visible in both highresolution spectra as well as in the filters of photometric instruments. However, only during primary eclipse absorption bands of CO2, H2 Oa nd O 3 are detectable for all scenarios when using photometric instruments and an E-ELT-like telescope setup. CH4 is only detectable at the outer HZ of the K-type star since here the atmospheric modeling results in very high abundances. Since the detectable CO2 and H2O absorption bands overlap, separate bands need to be observed to prove their existence in the planetary atmosphere. In order to detect H2O in a separate band, a ratio S /N > 7 needs to be achieved for E-ELT observations, e.g. by co-adding at least 10 transit observations. Using a space-borne telescope like the JWST enables the detection of CO2 at 4.3 μm, which is not possible for ground-based observations due to the Earth’s atmospheric absorption. Hence combining observations of space-borne and groundbased telescopes might allow to detect the presence of the biomarker molecule O3 and the related compounds H2 Oa nd CO 2 in a planetary atmosphere. Other absorption bands using the JWST can only be detected for much higher S/Ns, which is not achievable by just co-adding transit observations since this would be far beyond the planned mission time of JWST.
Astronomy and Astrophysics | 2011
D Kitzmann; A. B. C. Patzer; P von Paris; M Godolt; H. Rauer
Aims. We study the impact of multi-layered clouds (low-level water and high-level ice clouds) on the thermal emission spectra of Earth-like planets orbiting different types of stars. Clouds have an important influence on such planetary emission spectra due to their wavelength dependent absorption and scattering properties. We also investigate the influence of clouds on the ability to derive information about planetary surface temperatures from low-resolution spectra. Methods. We use a previously developed parametric cloud model based on observations in the Earth’s atmosphere, coupled to a onedimensional radiative-convective steady state climate model. This model is applied here to study the effect of clouds on the thermal emission spectra of Earth-like extrasolar planets in dependence of the type of central star. Results. The presence of clouds lead in general to a decrease of the planetary IR spectrum associated with the dampening of spectral absorption features such as the 9.6 µm absorption band of O3 for example. This dampening is not limited to absorption features originating below the cloud layers but was also found for features forming above the clouds. When only single cloud layers are considered, both cloud types exhibit basically the same effects on the spectrum but the underlying physical processes are clearly different. For model scenarios where multi-layered clouds have been considered with coverages which yield mean Earth surface temperatures, the low-level clouds have only a small influence on the thermal emission spectra. In these cases the major differences are caused by highlevel ice clouds. The largest effect was found for a planet orbiting the F-type star, where no absorption features can be distinguished in the low-resolution emission spectrum for high cloud coverages. However, for most central stars, planetary atmospheric absorption bands are present even at high cloud coverages. Clouds also affect the derivation of surface temperatures from low-resolution spectra when fitting black-body radiation curves to the spectral shape of the IR emission spectra. With increasing amount of high-level clouds the derived temperatures increasingly under-estimate the real planetary surface temperatures. Consequently, clouds can alter significantly the measured apparent temperature of a planet as well as the detectability of the characteristic spectral signatures in the infrared. Therefore, planets with observationally derived somewhat lower surface temperatures should not be discarded too quickly from the list of potential habitable planets before further investigations on the presence of clouds have been made.
Astronomy and Astrophysics | 2011
P von Paris; J. Cabrera; M Godolt; J L Grenfell; P. Hedelt; H. Rauer; Franz Schreier; Barbara Stracke
Context. Were a potentially habitable planet to be discovered, the next step would be the search for an atmosphere and its characterization. Eventually, surface conditions, hence habitability, and biomarkers as indicators for life would be assessed. Aims. The super-Earth candidate Gliese (GL) 581 d is the first potentially habitable extrasolar planet so far discovered. Therefore, GL 581 d is used to illustrate a hypothetical detailed spectroscopic characterization of such planets. Methods. Atmospheric profiles for a wide range of possible one-dimensional (1D) radiative-convective model scenarios of GL 581 d were used to calculate high-resolution synthetic emission and transmission spectra. Atmospheres were assumed to be composed of N2 ,C O 2 ,a nd H 2O. From the spectra, signal-to-noise ratios (SNRs) were calculated for a telescope such as the planned James Webb Space Telescope (JWST). Exposure times were set to be equal to the duration of one transit. Results. The presence of the model atmospheres can be clearly inferred from the calculated synthetic spectra thanks to strong water and carbon-dioxide absorption bands. Surface temperatures can be inferred for model scenarios with optically thin spectral windows. Dense, CO2-rich (potentially habitable) scenarios do not enable us to determine the surface temperatures nor assess habitability. Degeneracies between CO2 concentration and surface pressure complicate the interpretation of the calculated spectra, hence the determination of atmospheric conditions. Still, inferring approximative CO2 concentrations and surface pressures is possible. In practice, detecting atmospheric signals is challenging because the calculated SNR values are well below unity in most of the cases. The SNR for a single transit was only barely larger than unity in some near-IR bands for transmission spectroscopy. Most interestingly, the false-positive detection of biomarker candidates such as methane and ozone might be possible in low resolution spectra because CO2 absorption bands overlap biomarker spectral bands. This can be avoided, however, by observing all main CO2 IR bands instead of concentrating on, e.g., the 4.3 or 15 μm bands only. Furthermore, a masking of ozone signatures by CO2 absorption bands is shown to be possible. Simulations imply that such a false-negative detection of ozone would be possible even for rather high ozone concentrations of up to 10 −5 .
Astronomy and Astrophysics | 2011
D Kitzmann; A. B. C. Patzer; P von Paris; M Godolt; H. Rauer
Context. Owing to their wavelength dependent absorption and scattering properties, clouds have an important influence on spectral albedos and planetary reflection spectra. In addition, the spectral energy distribution of the incident stellar light determines the detectable absorption bands of atmospheric molecules in these reflection spectra. Aims. We study the influence of low-level water and high-level ice clouds on low-resolution reflection spectra and planetary albedos of Earth-like planets orbiting different types of stars in both the visible and near infrared wavelength range. Methods. We use a one-dimensional radiative-convective steady-state atmospheric model coupled with a parametric cloud model, based on observations in the Earth’s atmosphere to study the effect of both cloud types on the reflection spectra and albedos of Earthlike extrasolar planets at low resolution for various types of central stars. Results. We find that the high scattering efficiency of clouds causes both the amount of reflected light and the related depths of the absorption bands to be substantially larger than in comparison to the respective clear sky conditions. Low-level clouds have a stronger impact on the spectra than the high-level clouds because of their much larger scattering optical depth. The detectability of molecular features in near the UV – near IR wavelength range is strongly enhanced by the presence of clouds. However, the detectability of various chemical species in low-resolution reflection spectra depends strongly on the spectral energy distribution of the incident stellar radiation. In contrast to the reflection spectra the spectral planetary albedos enable molecular features to be detected without a direct influence of the spectral energy distribution of the stellar radiation. Here, clouds increase the contrast between the radiation fluxes of the planets and the respective central star by about one order of magnitude, but the resulting contrast values are still too low to be observable with the current generation of telescopes.
Astronomy and Astrophysics | 2011
P von Paris; S Gebauer; M Godolt; H. Rauer; Barbara Stracke
Context. The M-type star Gliese 581 is orbited by at least one terrestrial planet candidate in the habitable zone, i.e. GL 581 d. Orbital simulations have shown that additional planets inside the habitable zone of GL 581 would be dynamically stable. Recently, two other planet candidates have been claimed, one of them in the habitable zone. Aims. In view of the ongoing search for planets around M stars that is expected to result in numerous detections of potentially habitable super-Earths, we take the GL 581 system as an example for investigating such planets. In contrast to previous studies of habitability in the GL 581 system, we use a consistent atmospheric model to assess surface conditions and habitability. Furthermore, we performed detailed atmospheric simulations for a much larger subset of potential planetary and atmospheric scenarios than previously considered. Methods. A 1D radiative-convective atmosphere model was used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. In these calculations, key parameters such as surface pressure and CO2 concentration, as well as orbital distance and planetary mass are varied. Results. Results imply that surface temperatures above freezing could be obtained, independent of the atmospheric scenarios considered here, at an orbital distance of 0.117 AU. For an orbital distance of 0.146 AU, CO2 concentrations as low as 10 times the present Earth’s value are sufficient to warm the surface above the freezing point of water. At 0.175 AU, only scenarios with CO2 concentrations of 5% and 95% were found to be habitable, so an additional super-Earth planet in the GL 581 system in the previously determined dynamical stability range would be considered a potentially habitable planet.
arXiv: Instrumentation and Methods for Astrophysics | 2018
Denis Defrere; A. Léger; Olivier Absil; Antonio García Muñoz; Lee Grenfell; M Godolt; Jerôme Loicq; Jens Kammerer; Sascha P. Quanz; H. Rauer; Luca Schifano; Feng Tian
Proxima b is our nearest potentially rocky exoplanet and represents a formidable opportunity for exoplanet science and possibly astrobiology. With an angular separation of only 35 mas (or 0.05 AU) from its host star, Proxima b is however hardly observable with current imaging telescopes and future space-based coronagraphs. One way to separate the photons of the planet from those of its host star is to use an interferometer that can easily resolve such spatial scales. In addition, its proximity to Earth and its favorable contrast ratio compared with its host M dwarf (approximately 10-5 at 10 microns) makes it an ideal target for a space-based nulling interferometer with relatively small apertures. In this paper, we present the motivation for observing this planet in the mid-infrared (5-20 microns) and the corresponding technological challenges. Then, we describe the concept of a space-based infrared interferometer with relatively small (<1m in diameter) apertures that can measure key details of Proxima b, such as its size, temperature, climate structure, as well as the presence of important atmospheric molecules such as H2O, CO2, O3, and CH4. Finally, we illustrate the concept by showing realistic observations using synthetic spectra of Proxima b computed with coupled climate chemistry models.
Astronomy and Astrophysics | 2010
P von Paris; S Gebauer; M Godolt; J L Grenfell; Pascal Hedelt; D Kitzmann; A. B. C. Patzer; H. Rauer; Barbara Stracke
Aims. The planetary system around the M star Gliese 581 contains at least three close-in potentially low-mass planets, Gl 581c, d, and e. In order to address the question of the habitability of Gl 581d, we performed detailed atmospheric modeling studies for several planetary scenarios. Methods. A 1D radiative-convective model was used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. The model allows for changing surface pressures caused by evaporation/condensation of water and carbon dioxide. Furthermore, the treatment of the energy transport has been improved in the model to account in particular for high CO2, high-pressure Super-Earth conditions. Results. For four high-pressure scenarios of our study, the resulting surface temperatures were above 273 K, indicating a potential habitability of the planet. These scenarios include three CO2-dominated atmospheres (95% CO2 concentration with 5, 10, and 20 bar surface pressure) and a high-pressure CO2-enriched atmosphere (5% CO2 concentration with 20 bar surface pressure). For all other considered scenarios, the calculated Gl 581d surface temperatures were below the freezing point of water, suggesting that Gl 581d would not be habitable then. The results for our CO2-dominated scenarios confirm very recent model results by Wordsworth et al. (2010). However, our model calculations imply that also atmospheres that are not CO2-dominated (i.e., 5% vmr instead of 95% vmr) could result in habitable conditions for Gl 581d.
Icarus | 2011
J L Grenfell; S Gebauer; P von Paris; M Godolt; Pascal Hedelt; A. B. C. Patzer; Barbara Stracke; H. Rauer
Astrobiology | 2017
S Gebauer; J L Grenfell; Joachim Stock; Ralph Lehmann; M Godolt; P von Paris; H. Rauer