Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. C. S. Readhead is active.

Publication


Featured researches published by A. C. S. Readhead.


The Astrophysical Journal | 2003

The Anisotropy of the microwave background to l = 3500: Mosaic observations with the Cosmic Background Imager

B. S. Mason; Timothy J. Pearson; A. C. S. Readhead; M. C. Shepherd; J. L. Sievers; Patricia Simcoe Udomprasert; J. K. Cartwright; Alison J. Farmer; S. Padin; S. T. Myers; J. R. Bond; C. R. Contaldi; U.-L. Pen; S. Prunet; Dmitri Pogosyan; J. E. Carlstrom; J. M. Kovac; E. M. Leitch; C. Pryke; N. W. Halverson; W. L. Holzapfel; P. Altamirano; Leonardo Bronfman; S. Casassus; J. May; M. Joy

We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l 200 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument and extend the observations of this decline in power out to l 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l 1⁄4 2000 3500, the power is 3.1 greater than standard models for intrinsic microwave background anisotropy in this multipole range and 3.5 greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for 8e1, is consistent with predicted levels of a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin. Subject headings: cosmic microwave background — cosmology: observations


The Astrophysical Journal | 2004

Extended mosaic observations with the Cosmic Background Imager

A. C. S. Readhead; B. S. Mason; C. R. Contaldi; Timothy J. Pearson; J. R. Bond; S. T. Myers; S. Padin; J. L. Sievers; John K. Cartwright; M. C. Shepherd; Dmitry Pogosyan; S. Prunet; P. Altamirano; R. Bustos; Leonardo Bronfman; S. Casassus; W. L. Holzapfel; J. May; Ue-Li Pen; S. Torres; Patricia Simcoe Udomprasert

Two years of microwave background observations with the Cosmic Background Imager (CBI) have been combined to give a sensitive, high-resolution angular power spectrum over the range 400 2000 power previously seen with the CBI is reduced. Under the assumption that any signal in excess of the primary anisotropy is due to a secondary Sunyaev-Zeldovich anisotropy in distant galaxy clusters, we use CBI, Arcminute Cosmology Bolometer Array Receiver, and Berkeley-Illinois-Maryland Association array data to place a constraint on the present-day rms mass fluctuation on 8 h-1 Mpc scales, σ8. We present the results of a cosmological parameter analysis on the l < 2000 primary anisotropy data that show significant improvements in the parameters as compared to WMAP alone, and we explore the role of the small-scale cosmic microwave background data in breaking parameter degeneracies.


The Astrophysical Journal | 2003

Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA

J. L. Sievers; J. R. Bond; J. K. Cartwright; C. R. Contaldi; B. S. Mason; S. T. Myers; S. Padin; Timothy J. Pearson; U.-L. Pen; D. Pogosyan; S. Prunet; A. C. S. Readhead; M. C. Shepherd; Patricia Simcoe Udomprasert; Leonardo Bronfman; W. L. Holzapfel; J. May

We report on the cosmological parameters derived from observations with the Cosmic Background Imager (CBI), covering 40 deg2 and the multipole range 300 l 3500. The angular scales probed by the CBI correspond to structures that cover the mass range from 1014 to 1017 M?, and the observations reveal, for the first time, the seeds that gave rise to clusters of galaxies. These unique, high-resolution observations also show damping in the power spectrum to l ~ 2000, which we interpret as being due to the finite width of the photon-baryon decoupling region and the viscosity operating at decoupling. Because the observations extend to much higher l, the CBI results provide information complementary to that probed by the BOOMERANG, DASI, MAXIMA, and VSA experiments. When the CBI observations are used in combination with those from COBE-DMR, we find evidence for a flat universe, ?tot = 1.00 (1 ?), a power-law index of primordial fluctuations, ns = 1.08, and densities in cold dark matter, ?cdmh2 = 0.16, and baryons, ?bh2 = 0.023. With the addition of large-scale structure priors the ?cdmh2 value is sharpened to 0.10, and we find ?? = 0.67. In the l < 1000 overlap region with the BOOMERANG, DASI, MAXIMA, and VSA experiments, the agreement between these four experiments is excellent, and we construct optimal power spectra in the CBI bands that demonstrate this agreement. We derive cosmological parameters for the combined cosmic microwave background (CMB) experiments and show that these parameter determinations are stable as we progress from the weak priors using only CMB observations and very broad restrictions on cosmic parameters, through the addition of information from large-scale structure surveys, Hubble parameter determinations, and Type Ia supernova results. The combination of these with CMB observations gives a vacuum energy estimate of ?? = 0.70, a Hubble parameter of h = 0.69 ? 0.04, and a cosmological age of 13.7 ? 0.2 Gyr. As the observations are pushed to higher multipoles, no anomalies relative to standard models appear, and extremely good consistency is found between the cosmological parameters derived for the CBI observations over the range 610 < l < 2000 and observations at lower l.


Science | 2004

Polarization Observations with the Cosmic Background Imager

A. C. S. Readhead; S. T. Myers; Timothy J. Pearson; J. L. Sievers; B. S. Mason; C. R. Contaldi; J. R. Bond; R. Bustos; P. Altamirano; C. Achermann; Leonardo Bronfman; J. E. Carlstrom; John K. Cartwright; S. Casassus; C. Dickinson; W. L. Holzapfel; J. M. Kovac; E. M. Leitch; J. May; S. Padin; Dmitry Pogosyan; M. W. Pospieszalski; C. Pryke; R. Reeves; M. C. Shepherd; S. Torres

Polarization observations of the cosmic microwave background with the Cosmic Background Imager from September 2002 to May 2004 provide a significant detection of the E-mode polarization and reveal an angular power spectrum of polarized emission showing peaks and valleys that are shifted in phase by half a cycle relative to those of the total intensity spectrum. This key agreement between the phase of the observed polarization spectrum and that predicted on the basis of the total intensity spectrum provides support for the standard model of cosmology, in which dark matter and dark energy are the dominant constituents, the geometry is close to flat, and primordial density fluctuations are predominantly adiabatic with a matter power spectrum commensurate with inflationary cosmological models.


The Astrophysical Journal | 2001

FIRST INTRINSIC ANISOTROPY OBSERVATIONS WITH THE COSMIC BACKGROUND IMAGER

S. Padin; J. K. Cartwright; B. S. Mason; Timothy J. Pearson; A. C. S. Readhead; M. C. Shepherd; J. L. Sievers; Patricia Simcoe Udomprasert; W. L. Holzapfel; S. T. Myers; J. E. Carlstrom; Erik M. Leitch; M. Joy; Leonardo Bronfman; J. May

We present the first results of observations of the intrinsic anisotropy of the cosmic microwave background radiation with the Cosmic Background Imager from a site at 5080 m altitude in northern Chile. Our observations show a sharp decrease in Cl in the range l = 400-1500. The broadband amplitudes we have measured are δTband = 58.7 μK for l = 603 and δTband = 29.7 μK for l = 1190, where these are half-power widths in l. Such a decrease in power at high l is one of the fundamental predictions of the standard cosmological model, and these are the first observations which cover a broad enough l range to show this decrease in a single experiment. The Cl we have measured enables us to place limits on the density parameter, Ωtot ≤ 0.4 or Ωtot ≥ 0.7 (90% confidence).


The Astrophysical Journal | 2007

IMPLICATIONS OF THE COSMIC BACKGROUND IMAGER POLARIZATION DATA

J. L. Sievers; C. Achermann; J. R. Bond; Leonardo Bronfman; R. Bustos; C. R. Contaldi; C. Dickinson; Pedro G. Ferreira; Michael E. Jones; A. M. Lewis; B. S. Mason; J. May; S. T. Myers; N. Oyarce; S. Padin; Timothy J. Pearson; M. W. Pospieszalski; A. C. S. Readhead; R. Reeves; Ar Taylor; S. Torres

We present new measurements of the power spectra of the E mode of cosmic microwave background (CMB) polarization, the temperature T, the cross-correlation of E and T, and upper limits on the B mode from 2.5 yr of dedicated Cosmic Background Imager (CBI) observations. Both raw maps and optimal signal images in the (u, v)-plane and the sky plane show strong detections of the E mode (11.7 σ for the EE power spectrum overall) and no detection of the B mode. The power spectra are used to constrain parameters of the flat tilted adiabatic ΛCDM models: those determined from EE and TE bandpowers agree with those from TT, which is a powerful consistency check. There is little tolerance for shifting polarization peaks from the TT-forecast locations, as measured by the angular sound crossing scale θ = 100/l_s = 1.03 ± 0.02 from EE and TE; compare with 1.044 ± 0.005 with the TT data included. The scope for extra out-of-phase peaks from subdominant isocurvature modes is also curtailed. The EE and TE measurements of CBI, DASI, and BOOMERANG are mutually consistent and, taken together rather than singly, give enhanced leverage for these tests.


Publications of the Astronomical Society of the Pacific | 2002

The Cosmic Background Imager

S. Padin; M. C. Shepherd; J. K. Cartwright; R. G. Keeney; B. S. Mason; Timothy J. Pearson; A. C. S. Readhead; W. A. Schaal; J. L. Sievers; Patricia Simcoe Udomprasert; J. Yamasaki; W. L. Holzapfel; J. E. Carlstrom; M. Joy; S. T. Myers; A. Otarola

Design and performance details are given for the Cosmic Background Imager (CBI), an interferometer array that is measuring the power spectrum of fluctuations in the cosmic microwave background radiation (CMBR) for multipoles in the range 400<l< 3500. The CBI is located at an altitude of 5000 m in the Atacama Desert in northern Chile. It is a planar synthesis array with 13 0.9 m diameter antennas on a 6 m diameter tracking platform. Each antenna has a cooled, low-noise receiver operating in the 26-36 GHz band. Signals are cross-correlated in an analog filterbank correlator with 10 1 GHz bands. This allows spectral index measurements that can be used to distinguish CMBR signals from diffuse galactic foregrounds. A 1.2 kHz 180° phase-switching scheme is used to reject cross talk and low-frequency pick-up in the signal processing system. The CBI has a three-axis mount that allows the tracking platform to be rotated about the optical axis, providing improved (u, v) coverage and a powerful discriminant against false signals generated in the receiving electronics. Rotating the tracking platform also permits polarization measurements when some of the antennas are configured for the orthogonal polarization.


The Astrophysical Journal | 2006

Morphological Analysis of the Centimeter-Wave Continuum in the Dark Cloud LDN 1622

S. Casassus; G. F. Cabrera; Francisco Forster; Timothy J. Pearson; A. C. S. Readhead; C. Dickinson

The spectral energy distribution of the dark cloud LDN 1622, as measured by Finkbeiner using WMAP data, drops above 30 GHz and is suggestive of a Boltzmann cutoff in grain rotation frequencies, characteristic of spinning dust emission. LDN 1622 is conspicuous in the 31 GHz image we obtained with the Cosmic Background Imager, which is the first centimeter-wave resolved image of a dark cloud. The 31 GHz emission follows the emission traced by the four IRAS bands. The normalized cross-correlation of the 31 GHz image with the IRAS images is higher by 6.6 σ for the 12 and 25 μm bands than for the 60 and 100 μm bands: C12+25 = 0.76 ± 0.02, and C60+100 = 0.64 ± 0.01. The mid-IR-centimeter-wave correlation in LDN 1622 is evidence for very small grain (VSG) or continuum emission at 26-36 GHz from a hot molecular phase. In dark clouds and their photon-dominated regions (PDRs), the 12 and 25 μm emission is attributed to stochastic heating of the VSGs. The mid-IR and centimeter-wave dust emissions arise in a limb-brightened shell coincident with the PDR of LDN 1622, where the incident UV radiation from the Ori OB 1b association heats and charges the grains, as is required for spinning dust.


The Astrophysical Journal | 2003

A Fast Gridded Method for the Estimation of the Power Spectrum of the Cosmic Microwave Background from Interferometer Data with Application to the Cosmic Background Imager

S. T. Myers; C. R. Contaldi; J. R. Bond; U.-L. Pen; D. Pogosyan; S. Prunet; J. L. Sievers; B. S. Mason; Timothy J. Pearson; A. C. S. Readhead; M. C. Shepherd

We describe an algorithm for the extraction of the angular power spectrum of an intensity field, such as the cosmic microwave background (CMB), from interferometer data. This new method, based on the gridding of interferometer visibilities in the aperture plane followed by a maximum likelihood solution for band powers, is much faster than direct likelihood analysis of the visibilities and deals with foreground radio sources, multiple pointings, and differencing. The gridded aperture-plane estimators are also used to construct Wiener-filtered images using the signal and noise covariance matrices used in the likelihood analysis. Results are shown for simulated data. The method has been used to determine the power spectrum of the CMB from observations with the Cosmic Background Imager, and the results are given in companion papers. Subject headings: cosmic microwave background — methods: data analysis


The Astrophysical Journal | 2009

A 31 GHz Survey of Low-Frequency Selected Radio Sources

B. S. Mason; Lawrence Weintraub; J. L. Sievers; J. R. Bond; S. T. Myers; Timothy J. Pearson; A. C. S. Readhead; M. C. Shepherd

The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg^2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = –0.71 ± 0.01 (S_ν ∝ ν^α); 9.0% ± 0.8% of sources have α > –0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy S_(31)) = (16.7 ± 1.7) deg^(-2)(S_(31)/1 mJy)^(–0.80±0.07). We also assess the contribution of mJy-level (S_(1.4 GHz) < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of l(l + 1)C^(src)_l /(2π) = 44 ± 14 μK^2 and a 95% upper limit of 80 μK^2 at l = 2500. Including an estimated contribution of 12 μK^2 from the population of sources responsible for the turn-up in counts below S_(1.4 GHz) = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-l excess signal, 275 ± 63 μK^2. These results are consistent with other measurements of the 31 GHz point-source foreground.

Collaboration


Dive into the A. C. S. Readhead's collaboration.

Top Co-Authors

Avatar

Timothy J. Pearson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. S. Mason

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

M. C. Shepherd

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. T. Myers

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

S. Padin

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. May

University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. L. Sievers

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar

Patricia Simcoe Udomprasert

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge