Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. E. Perring is active.

Publication


Featured researches published by A. E. Perring.


Geophysical Research Letters | 2012

Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass

Roya Bahreini; Ann M. Middlebrook; J. A. de Gouw; Carsten Warneke; M. Trainer; C. A. Brock; Harald Stark; Steven S. Brown; William P. Dubé; J. B. Gilman; K. Hall; John S. Holloway; William C. Kuster; A. E. Perring; André S. H. Prévôt; Joshua P. Schwarz; J. R. Spackman; Sönke Szidat; N. L. Wagner; Rodney J. Weber; P. Zotter; D. D. Parrish

Although laboratory experiments have shown that organic compounds in both gasoline fuel and diesel engine exhaust can form secondary organic aerosol (SOA), the fractional contribution from gasoline and diesel exhaust emissions to ambient SOA in urban environments is poorly known. Here we use airborne and ground-based measurements of organic aerosol (OA) in the Los Angeles (LA) Basin, California made during May and June 2010 to assess the amount of SOA formed from diesel emissions. Diesel emissions in the LA Basin vary between weekdays and weekends, with 54% lower diesel emissions on weekends. Despite this difference in source contributions, in air masses with similar degrees of photochemical processing, formation of OA is the same on weekends and weekdays, within the measurement uncertainties. This result indicates that the contribution from diesel emissions to SOA formation is zero within our uncertainties. Therefore, substantial reductions of SOA mass on local to global scales will be achieved by reducing gasoline vehicle emissions.


Science | 2011

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill

J. A. de Gouw; Ann M. Middlebrook; Carsten Warneke; Ravan Ahmadov; E. Atlas; Roya Bahreini; D. R. Blake; C. A. Brock; J. Brioude; D. W. Fahey; F. C. Fehsenfeld; John S. Holloway; M. Le Hénaff; R. A. Lueb; S. A. McKeen; J. F. Meagher; D. M. Murphy; Claire B. Paris; D. D. Parrish; A. E. Perring; Ilana B. Pollack; A. R. Ravishankara; Allen L. Robinson; T. B. Ryerson; Joshua P. Schwarz; J. R. Spackman; Ashwanth Srinivasan; Leon Adam Watts

Organic compounds of intermediate volatility play an important role in the formation of secondary organic aerosols. A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons.


Aerosol Science and Technology | 2010

The Detection Efficiency of the Single Particle Soot Photometer

J. P. Schwarz; J. R. Spackman; R. S. Gao; A. E. Perring; Eilene S. Cross; Timothy B. Onasch; Alexander Ahern; William Wrobel; P. Davidovits; Jason S. Olfert; Manvendra K. Dubey; Claudio Mazzoleni; D. W. Fahey

A single particle soot photometer (SP2) uses an intense laser to heat individual aerosol particles of refractory black carbon (rBC) to vaporization, causing them to emit detectable amounts of thermal radiation that are used to quantify rBC mass. This approach is well suited for the detection of the majority of rBC mass loading in the ambient atmosphere, which occurs primarily in the accumulation mode (∼ 1–300 fg-rBC/particle). In addition to operator choices about instrument parameters, SP2 detection of rBC number and/or mass can be limited by the physical process inherent in the SP2 detection technique — namely at small rBC mass or low laser intensities, particles fail to heat to vaporization, a requirement for proper detection. In this study, the SP2s ability to correctly detect and count individual flame-generated soot particles was measured at different laser intensities for different rBC particle masses. The flame-generated soot aerosol used for testing was optionally prepared with coatings of organic and non-organic material and/or thermally denuded. These data are used to identify a minimum laser intensity for accurate detection at sea level of total rBC mass in the accumulation mode (300 nW/(220-nm PSL)), a minimum rBC mass (∼ 0.7-fg rBC-mass corresponding to 90 nm volume-equivalent diameter) for near-unity number detection efficiency with a typical operating laser intensity (450 nW/(220-nm PSL)), and a methodology using observed color temperature to recognize laser intensity insufficient for accurate rBC mass detection. Additionally, methods for measurement of laser intensity using either laboratory or ambient aerosol are presented.


Scientific Reports | 2013

Black carbon aerosol size in snow

J. P. Schwarz; R. S. Gao; A. E. Perring; J. R. Spackman; D. W. Fahey

The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BCs size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BCs absorption properties for calculations of BCs snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.


Geophysical Research Letters | 2013

Global‐scale seasonally resolved black carbon vertical profiles over the Pacific

Joshua P. Schwarz; Bjørn H. Samset; A. E. Perring; J. R. Spackman; R. S. Gao; P. Stier; Michael Schulz; F. L. Moore; Eric A. Ray; D. W. Fahey

[1] Black carbon (BC) aerosol loadings were measured during the High-performance Instrumented Airborne Platform for Environmental Research Pole-to-Pole Observations (HIPPO) campaign above the remote Pacific from 85°N to 67°S. Over 700 vertical profiles extending from near the surface to max ∼14 km altitude were obtained with a single-particle soot photometer between early 2009 and mid-2011. The data provides a climatology of BC in the remote regions that reveals gradients of BC concentration reflecting global-scale transport and removal of pollution. BC is identified as a sensitive tracer of extratropical mixing into the lower tropical tropopause layer and trends toward surprisingly uniform loadings in the lower stratosphere of ∼1 ng/kg. The climatology is compared to predictions from the AeroCom global model intercomparison initiative. The AeroCom model suite overestimates loads in the upper troposphere/lower stratosphere (∼10×) more severely than at lower altitudes (∼3×), with bias roughly independent of season or geographic location; these results indicate that it overestimates BC lifetime.


Geophysical Research Letters | 2015

Evolution of brown carbon in wildfire plumes

Haviland Forrister; Jiumeng Liu; Eric Scheuer; Jack E. Dibb; Luke D. Ziemba; K. L. Thornhill; Bruce E. Anderson; Glenn S. Diskin; A. E. Perring; Joshua P. Schwarz; Pedro Campuzano-Jost; Douglas A. Day; Brett B. Palm; Jose L. Jimenez; Athanasios Nenes; Rodney J. Weber

Particulate brown carbon (BrC) in the atmosphere absorbs light at subvisible wavelengths and has poorly constrained but potentially large climate forcing impacts. BrC from biomass burning has virtually unknown lifecycle and atmospheric stability. Here, BrC emitted from intense wildfires was measured in plumes transported over 2 days from two main fires, during the 2013 NASA SEAC4RS mission. Concurrent measurements of organic aerosol (OA) and black carbon (BC) mass concentration, BC coating thickness, absorption Angstrom exponent, and OA oxidation state reveal that the initial BrC emitted from the fires was largely unstable. Using back trajectories to estimate the transport time indicates that BrC aerosol light absorption decayed in the plumes with a half-life of 9 to 15 h, measured over day and night. Although most BrC was lost within a day, possibly through chemical loss and/or evaporation, the remaining persistent fraction likely determines the background BrC levels most relevant for climate forcing.


Environmental Science & Technology | 2011

Impact of Fuel Quality Regulation and Speed Reductions on Shipping Emissions: Implications for Climate and Air Quality

D. A. Lack; Christopher D. Cappa; Justin M. Langridge; Roya Bahreini; Gina Buffaloe; C. A. Brock; K. Cerully; D. J. Coffman; Katherine Hayden; John S. Holloway; Paola Massoli; Shao-Meng Li; Robert McLaren; Ann M. Middlebrook; R. H. Moore; Athanasios Nenes; I. Nuaaman; Timothy B. Onasch; J. Peischl; A. E. Perring; Patricia K. Quinn; T. B. Ryerson; Joshua P. Schwartz; Ryan Spackman; Steven C. Wofsy; D. R. Worsnop; B. Xiang; Eric Williams

Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Air quality implications of the Deepwater Horizon oil spill

Ann M. Middlebrook; D. M. Murphy; Ravan Ahmadov; Elliot Atlas; Roya Bahreini; D. R. Blake; J. Brioude; Joost A. de Gouw; Fred C. Fehsenfeld; G. J. Frost; John S. Holloway; D. A. Lack; Justin M. Langridge; Rich Lueb; S. A. McKeen; J. F. Meagher; Simone Meinardi; J. Andrew Neuman; J. B. Nowak; D. D. Parrish; J. Peischl; A. E. Perring; Ilana B. Pollack; James M. Roberts; Thomas B. Ryerson; Joshua P. Schwarz; J. Ryan Spackman; Carsten Warneke; A. R. Ravishankara

During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NOx emissions from the recovery and cleanup operations produced ozone.


Geophysical Research Letters | 2015

Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion

Pablo E. Saide; David A. Peterson; Arlindo da Silva; Bruce E. Anderson; Luke D. Ziemba; Glenn S. Diskin; Glen Sachse; J. W. Hair; Carolyn Butler; Marta A. Fenn; Jose L. Jimenez; Pedro Campuzano-Jost; A. E. Perring; Joshua P. Schwarz; Milos Z. Markovic; P. B. Russell; J. Redemann; Yohei Shinozuka; David G. Streets; Fang Yan; Jack E. Dibb; Robert J. Yokelson; O. Brian Toon; Edward J. Hyer; Gregory R. Carmichael

We couple airborne, ground-based, and satellite observations; conduct regional simulations; and develop and apply an inversion technique to constrain hourly smoke emissions from the Rim Fire, the third largest observed in California, USA. Emissions constrained with multiplatform data show notable nocturnal enhancements (sometimes over a factor of 20), correlate better with daily burned area data, and are a factor of 2–4 higher than a priori estimates, highlighting the need for improved characterization of diurnal profiles and day-to-day variability when modeling extreme fires. Constraining only with satellite data results in smaller enhancements mainly due to missing retrievals near the emissions source, suggesting that top-down emission estimates for these events could be underestimated and a multiplatform approach is required to resolve them. Predictions driven by emissions constrained with multiplatform data present significant variations in downwind air quality and in aerosol feedback on meteorology, emphasizing the need for improved emissions estimates during exceptional events.


Journal of Geophysical Research | 2015

Airborne observations of regional variation in fluorescent aerosol across the United States

A. E. Perring; Joshua P. Schwarz; Darrel Baumgardner; Mark Hernandez; D. V. Spracklen; Colette L. Heald; R. S. Gao; Gregory L. Kok; Gavin R. McMeeking; J. B. McQuaid; D. W. Fahey

Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wideband of longitude across the continental U.S. between Florida and California and between 28 and 37 N latitudes. Sampling occurred from near the surface to 1000 m above the ground. A Wideband Integrated Bioaerosol Sensor (WIBS-4) measured average concentrations of supermicron fluorescent particles aloft (1 µm to 10 µm), revealing number concentrations ranging from 2.1 ± 0.8 to 8.7 ± 2.2 × 104 particles m−3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol. Fluorescent aerosol detected in the east is largely consistent with mold spores observed in a laboratory setting, while a shift to larger sizes associated with different fluorescent patterns is observed in the west. Fluorescent bioaerosol loadings in the desert west were as high as those near the Gulf of Mexico, suggesting that bioaerosol is a substantial component of supermicron aerosol both in humid and arid environments. The observations are compared to model fungal and bacterial loading predictions, and good agreement in both particle size and concentrations is observed in the east. In the west, the model underestimated observed concentrations by a factor between 2 and 4 and the prescribed particle sizes are smaller than the observed fluorescent aerosol. A classification scheme for use with WIBS data is also presented.

Collaboration


Dive into the A. E. Perring's collaboration.

Top Co-Authors

Avatar

Joshua P. Schwarz

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

D. W. Fahey

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

J. P. Schwarz

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

J. Peischl

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Campuzano-Jost

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge