Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Nelson is active.

Publication


Featured researches published by A. J. Nelson.


Science | 2006

Synthesis and characterization of the nitrides of platinum and iridium

Jonathan C. Crowhurst; Alexander F. Goncharov; Babak Sadigh; Cheryl Evans; Peter G. Morrall; James L. Ferreira; A. J. Nelson

Transition metal nitrides are of great technological and fundamental importance because of their strength and durability and because of their useful optical, electronic, and magnetic properties. We have evaluated a recently synthesized platinum nitride (PtN) that was shown to have a large bulk modulus, and we propose a structure that is isostructural with pyrite and has the stoichiometry PtN2. We have also synthesized a recoverable nitride of iridium under nearly the same conditions of pressure and temperature as PtN2. Although it has the same stoichiometry, it exhibits much lower structural symmetry. Preliminary results suggest that the bulk modulus of this material is also very large.


ACS Nano | 2015

Ultralow Density, Monolithic WS2, MoS2, and MoS2/Graphene Aerogels

Marcus A. Worsley; Swanee J. Shin; Matthew Merrill; Jeremy M. Lenhardt; A. J. Nelson; Leta Y. Woo; Alex E. Gash; Theodore F. Baumann; Christine A. Orme

We describe the synthesis and characterization of monolithic, ultralow density WS2 and MoS2 aerogels, as well as a high surface area MoS2/graphene hybrid aerogel. The monolithic WS2 and MoS2 aerogels are prepared via thermal decomposition of freeze-dried ammonium thio-molybdate (ATM) and ammonium thio-tungstate (ATT) solutions, respectively. The densities of the pure dichalcogenide aerogels represent 0.4% and 0.5% of full density MoS2 and WS2, respectively, and can be tailored by simply changing the initial ATM or ATT concentrations. Similar processing in the presence of the graphene aerogel results in a hybrid structure with MoS2 sheets conformally coating the graphene scaffold. This layered motif produces a ∼50 wt % MoS2 aerogel with BET surface area of ∼700 m(2)/g and an electrical conductivity of 112 S/m. The MoS2/graphene aerogel shows promising results as a hydrogen evolution reaction catalyst with low onset potential (∼100 mV) and high current density (100 mA/cm(2) at 260 mV).


Journal of Vacuum Science and Technology | 2000

Core-level satellites and outer core-level multiplet splitting in Mn model compounds

A. J. Nelson; John G. Reynolds; Joseph W. Roos

We report a systematic study of the Mn 2p, 3s, and 3p core-level photoemission and satellite structures for Mn model compounds. Charge transfer from the ligand state to the 3d metal state is observed and is distinguished by prominent shake-up satellites. We also observe that the Mn 3s multiplet splitting becomes smaller as the Mn oxidation state increases, and that 3s–3d electron correlation reduces the branching ratio of the 7S:5S states in the Mn 3s spectra. In addition, as the ligand electronegativity decreases, the spin-state purity is lost in the 3s spectra, as evidenced by peak broadening. Our results are best understood in terms of the configuration–interaction model including intrashell electron correlation, charge transfer, and final-state screening.


Review of Scientific Instruments | 2012

Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited).

M. Gatu Johnson; J. A. Frenje; D. T. Casey; C. K. Li; F. H. Séguin; R. D. Petrasso; R. C. Ashabranner; R. Bionta; D. L. Bleuel; E. Bond; J. A. Caggiano; A. Carpenter; C. Cerjan; T. J. Clancy; T. Doeppner; M. J. Eckart; M. J. Edwards; S. Friedrich; S. H. Glenzer; S. W. Haan; Edward P. Hartouni; R. Hatarik; S. P. Hatchett; O. S. Jones; G. A. Kyrala; S. Le Pape; R. A. Lerche; O. L. Landen; T. Ma; A. J. Mackinnon

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.


Applied Surface Science | 1999

Analysis of manganese particulates from automotive decomposition of methylcyclopentadienyl manganese tricarbonyl

C Colmenares; Steven Deutsch; Cheryl L. Evans; A. J. Nelson; Louis J. Terminello; John G. Reynolds; Joseph W. Roos; Isaac L. Smith

Abstract Particulates have been collected and analyzed from automotive vehicles operating on fuel containing the organometallic antiknock additive methylcyclopentadienyl manganese tricarbonyl. Electron spectroscopy for chemical analysis and L-edge X-ray absorption spectroscopy were used to study and identify the manganese species present in these emitted particulates. Results show that respirable size particulates with a mass median aerodynamic diameter of 2.5 μm or less (PM 2.5 ) in vehicle exhaust contain manganese primarily in the form of a manganese phosphate and/or sulfate.


Optics Express | 2009

Soft x-ray free electron laser microfocus for exploring matter under extreme conditions

A. J. Nelson; S. Toleikis; Henry N. Chapman; Sasa Bajt; J. Krzywinski; J. Chalupsky; L. Juha; Jaroslav Cihelka; V. Hajkova; L. Vysin; T. Burian; M. Kozlova; R. R. Fäustlin; B. Nagler; S. M. Vinko; T. Whitcher; T. Dzelzainis; O. Renner; Karel Saksl; A.R. Khorsand; Philip A. Heimann; R. Sobierajski; D. Klinger; M. Jurek; J.B. Pełka; Bianca Iwan; Jakob Andreasson; Nicusor Timneanu; M. Fajardo; J. S. Wark

We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 microJ, 5 Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) - PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of < or =1 microm. Observations were correlated with simulations of best focus to provide further relevant information.


Journal of Applied Physics | 2000

Optical properties of ZnS1−xSex alloys fabricated by plasma-induced isoelectronic substitution

Rong Rujkorakarn; A. J. Nelson

Nonequilibrium growth of thin-film ternary ZnS1−xSex semiconductor alloys was accomplished using physical vapor deposition with simultaneous electron cyclotron resonance H2S plasma activation. Substrate temperature, gas flow, and plasma power determine the ZnS1−xSex alloy composition and structure. Integrated optical transmission spectra for the ZnS1−xSex semiconductor alloys as a function of H2S plasma power are presented. Using the α2 vs hν plots for the various ZnS1−xSex films, the optical band gap Eg is extrapolated from each curve. This methodology yields the values of the band gap as a function of stoichiometry. We observe that the plasma induced isoelectronic substitution of S into the ZnSe lattice increases the band gap. This study shows that plasma-induced isoelectronic substitution is technologically feasible and useful for fabricating ternary II–VI alloys under nonequilibrium conditions.


Langmuir | 2014

Enhanced Delamination of Ultrathin Free-Standing Polymer Films via Self-Limiting Surface Modification

Salmaan Baxamusa; Michael Stadermann; Chantel M. Aracne-Ruddle; A. J. Nelson; Maverick Chea; Shuali Li; Kelly Youngblood; Tayyab I. Suratwala

Free-standing polymer thin films are typically fabricated using a sacrificial underlayer (between the film and its deposition substrate) or overlayer (on top of the film to assist peeling) in order to facilitate removal of the thin film from its deposition substrate. We show the direct delamination of extraordinarily thin (as thin as 8 nm) films of poly(vinyl formal) (PVF), polystyrene, and poly(methyl methacrylate). Large (up to 13 cm diameter) films of PVF could be captured on wire supports to produce free-standing films. By modifying the substrate to lower the interfacial energy resisting film-substrate separation, the conditions for spontaneous delamination are satisfied even for very thin films. The substrate modification is based on the electrostatic adsorption of a cationic polyelectrolyte. Eliminating the use of sacrificial materials and instead relying on naturally self-limiting adsorption makes this method suitable for large areas. We have observed delamination of films with aspect ratios (ratio of lateral dimension between supports to thickness) of 10(7) and have captured dry, free-standing films with aspect ratios >10(6). Films with an aspect ratio of 10(5) can bear loads up to 10(6) times the mass of the film itself. The presence of the adsorbed layer can be observed using X-ray photoelectron spectroscopy, and this layer is persistent through multiple uses. In the system studied, elimination of sacrificial materials leads to an enhancement in the failure strength of the free-standing thin film. The robustness, persistence, and the self-optimizing nature distinguish this method from various fabrication methods utilizing sacrificial materials and make it a potentially scalable process for the fabrication of ultrathin free-standing or transferrable films for filtration, MEMS, or tissue engineering applications.


Review of Scientific Instruments | 2012

Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

D. T. Casey; J. A. Frenje; M. Gatu Johnson; F. H. Séguin; C. K. Li; R. D. Petrasso; V. Yu. Glebov; Joseph Katz; J. P. Knauer; D. D. Meyerhofer; T. C. Sangster; R. Bionta; D. L. Bleuel; T. Döppner; S. H. Glenzer; Edward P. Hartouni; S. P. Hatchett; S. Le Pape; T. Ma; A. J. Mackinnon; M. McKernan; M. J. Moran; Eric K. Moses; H.-S. Park; J. E. Ralph; B. A. Remington; V. A. Smalyuk; C. B. Yeamans; J. L. Kline; G. A. Kyrala

A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.


Review of Scientific Instruments | 2011

Multipurpose modular experimental station for the DiProI beamline of Fermi@Elettra free electron laser.

Emanuele Pedersoli; Flavio Capotondi; Daniele Cocco; Marco Zangrando; Burkhard Kaulich; R.H. Menk; Andrea Locatelli; Tevfik Onur Menteş; Carlo Spezzani; Gilio Sandrin; Daniel M. Bacescu; M. Kiskinova; Sasa Bajt; Miriam Barthelmess; Anton Barty; Joachim Schulz; Lars Gumprecht; Henry N. Chapman; A. J. Nelson; Matthias Frank; Michael J. Pivovaroff; Bruce W. Woods; Michael J. Bogan; Janos Hajdu

We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.

Collaboration


Dive into the A. J. Nelson's collaboration.

Top Co-Authors

Avatar

Adam M. Conway

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. Nikolic

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lars F. Voss

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Juha

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

J. Krzywinski

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. Nagler

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Robert T. Graff

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Dzelzainis

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

James Dunn

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge