Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Janos is active.

Publication


Featured researches published by A. Janos.


Nuclear Fusion | 1992

Simulations of deuterium-tritium experiments in TFTR

R.V. Budny; M.G. Bell; H. Biglari; M. Bitter; C.E. Bush; C. Z. Cheng; E. D. Fredrickson; B. Grek; K. W. Hill; H. Hsuan; A. Janos; D.L. Jassby; D. Johnson; L. C. Johnson; B. LeBlanc; D. McCune; David Mikkelsen; H. Park; A. T. Ramsey; Steven Anthony Sabbagh; S.D. Scott; J. Schivell; J. D. Strachan; B. C. Stratton; E. J. Synakowski; G. Taylor; M. C. Zarnstorff; S.J. Zweben

A transport code (TRANSP) is used to simulate future deuterium-tritium (DT) experiments in TFTR. The simulations are derived from 14 TFTR DD discharges, and the modelling of one supershot is discussed in detail to indicate the degree of accuracy of the TRANSP modelling. Fusion energy yields and alpha particle parameters are calculated, including profiles of the alpha slowing down time, the alpha average energy, and the Alfven speed and frequency. Two types of simulation are discussed. The main emphasis is on the DT equivalent, where an equal mix of D and T is substituted for the D in the initial target plasma, and for the D0 in the neutral beam injection, but the other measured beam and plasma parameters are unchanged. This simulation does not assume that alpha heating will enhance the plasma parameters or that confinement will increase with the addition of tritium. The maximum relative fusion yield calculated for these simulations is QDT ~ 0.3, and the maximum alpha contribution to the central toroidal β is βα(0) ~ 0.5%. The stability of toroidicity induced Alfven eigenmodes (TAE) and kinetic ballooning modes (KBM) is discussed. The TAE mode is predicted to become unstable for some of the simulations, particularly after the termination of neutral beam injection. In the second type of simulation, empirical supershot scaling relations are used to project the performance at the maximum expected beam power. The MHD stability of the simulations is discussed


Nuclear Fusion | 1995

Simulations of alpha parameters in a TFTR DT supershot with high fusion power

R.V. Budny; M.G. Bell; A. Janos; D.L. Jassby; L. C. Johnson; D.K. Mansfield; D. McCune; M.H. Redi; J. Schivell; G. Taylor; T.B. Terpstra; M. C. Zarnstorff; S.J. Zweben

A TFTR supershot with a plasma current of 2.5 MA, a neutral beam heating power of 33.7 MW and a peak DT fusion power of 7.5 MW is studied using the TRANSP plasma analysis code. Simulations of alpha parameters such as the alpha heating, pressure and distributions in energy and v1/v are given. The effects of toroidal ripple and mixing of the fast alpha particles during the sawteeth observed after the neutral beam injection phase are modelled. The distributions of alpha particles on the outer midplane are peaked near forward and backward v1/v. Ripple losses deplete the distributions in the vicinity of v1/v=-0.2. Sawtooth mixing of fast alpha particles is computed to reduce their central density and broaden their width in energy


Physics of fluids. B, Plasma physics | 1991

High poloidal beta equilibria in the Tokamak Fusion Test Reactor limited by a natural inboard poloidal field null

Steven Anthony Sabbagh; R. A. Gross; M.E. Mauel; G.A. Navratil; M.G. Bell; R. E. Bell; M. Bitter; N. Bretz; R.V. Budny; C.E. Bush; M. S. Chance; P.C. Efthimion; E. D. Fredrickson; R. Hatcher; R.J. Hawryluk; S. P. Hirshman; A. Janos; Stephen C. Jardin; D.L. Jassby; J. Manickam; D. McCune; K. McGuire; S.S. Medley; D. Mueller; Y. Nagayama; D.K. Owens; M. Okabayashi; H. Park; A. T. Ramsey; B. C. Stratton

Recent operation of the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Research 1, 51 (1986)] has produced plasma equilibria with values of Λ≡βp eq+li/2 as large as 7, eβp dia≡2μ0e〈p⊥〉/〈〈Bp〉〉2 as large as 1.6, and Troyon normalized diamagnetic beta [Plasma Phys. Controlled Fusion 26, 209 (1984); Phys. Lett. 110A, 29 (1985)], βNdia≡108〈βt⊥〉aB0/Ip as large as 4.7. When eβp dia≳1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge that was sustained for many energy confinement times, τE. The largest values of eβp and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and τE greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L‐mode predictions have been achieved. The fusion power gain QDD reached a value of 1.3×10−...


Physics of Plasmas | 1996

Tomography of full sawtooth crashes on the Tokamak Fusion Test Reactor

Y. Nagayama; Masaaki Yamada; W. Park; E. D. Fredrickson; A. Janos; K. McGuire; G. Taylor

Full sawtooth crashes in high temperature plasmas have been investigated on the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 33, 1509 (1991)]. A strong asymmetry in the direction of major radius, a feature of the ballooning mode, and a remaining m=1 region after the crash have been observed with electron cyclotron emission image reconstructions. The TFTR data is not consistent with two‐dimensional (2‐D) models; it rather suggests a three‐dimensional (3‐D) localized reconnection arising on the bad curvature side. This process explains the phenomenon of fast heat transfer which keeps the condition q0<1.


Plasma Physics and Controlled Fusion | 1991

Overview of TFTR transport studies

R.J. Hawryluk; V. Arunasalam; Cris W. Barnes; Michael Beer; M.G. Bell; R. Bell; H. Biglari; M. Bitter; R. Boivin; N. Bretz; R. V. Budny; C.E. Bush; C. Z. Cheng; T. K. Chu; S Cohen; Steven C. Cowley; P C Efhimion; R.J. Fonck; E. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L R Grisham; G. W. Hammett; W.W. Heidbrink; K. W. Hill; J Hosea; R A Hulse; H. Hsuan

A review of TFTR plasma transport studies is presented. Parallel transport and the confinement of suprathermal ions are found to be relatively well described by theory. Cross-field transport of the thermal plasma, however, is anomalous with the momentum diffusivity being comparable to the ion thermal diffusivity and larger than the electron thermal diffusivity in neutral beam heated discharges. Perturbative experiments have studied nonlinear dependencies in the transport coefficients and examined the role of possible nonlocal phenomena. The underlying turbulence has been studied using microwave scattering, beam emission spectroscopy and microwave reflectometry over a much broader range in k perpendicular to than previously possible. Results indicate the existence of large-wavelength fluctuations correlated with enhanced transport.


Physics of fluids. B, Plasma physics | 1990

Correlations of heat and momentum transport in the TFTR tokamak

S.D. Scott; V. Arunasalam; Cris W. Barnes; M.G. Bell; M. Bitter; R. Boivin; N. Bretz; R.V. Budny; C.E. Bush; A. Cavallo; T. K. Chu; S.A. Cohen; P. Colestock; S. Davis; D. Dimock; H.F. Dylla; P.C. Efthimion; A. B. Erhrardt; R.J. Fonck; E. D. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L.R. Grisham; G. W. Hammett; R.J. Hawryluk; H. W. Hendel; K. W. Hill; E. Hinnov

Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low‐recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≊χi>χe. Recent measurements have confirmed similar behavior in broad‐density L‐mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test‐particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked‐density TFTR ‘‘supershots’’ with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In hi...


Nuclear Fusion | 1995

Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR

M.H. Redi; M. C. Zarnstorff; R. B. White; R.V. Budny; A. Janos; D.K. Owens; J. Schivell; S.D. Scott; S.J. Zweben

Predictions for ripple loss of fast ions from TFTR are investigated with a guiding centre code including both collisional and ripple effects. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. The total loss is calculated to be roughly twice the sum of ripple and collisional losses calculated separately. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A 20 to 30% reduction in alpha particle heating is predicted for qa=6-14, R=2.6 m DT plasmas on TFTR owing to first orbit and collisional stochastic ripple diffusion


Physics of Plasmas | 1995

β limit disruptions in the Tokamak Fusion Test Reactor

E. D. Fredrickson; K. McGuire; Z. Chang; A. Janos; M.G. Bell; R.V. Budny; C.E. Bush; J. Manickam; H. E. Mynick; R. Nazikian; G. Taylor

A disruptive β limit (β=plasma pressure/magnetic pressure) is observed in high‐performance plasmas in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Plasma Phys. Controlled Nuclear Fusion 1, 421 (1987)]. The magnetohydrodynamic character of these disruptions differs substantially from the disruptions in high‐density plasmas (density limit disruptions) on TFTR. The high β disruptions can occur with less than a millisecond warning in the form of a fast growing precursor. The precursor appears to be an n=1 kink strongly coupled through finite β effects and toroidal terms to higher m components. It does not have the ‘‘cold bubble’’ structure found in density limit disruptions. The n=1 kink, in turn, appears to excite a ballooning‐type mode that may contribute to the thermal quench.


Physics of Plasmas | 1995

Enhanced performance of deuterium--tritium-fueled supershots using extensive lithium conditioning in the Tokamak Fusion Test Reactor

D.K. Mansfield; J. D. Strachan; M.G. Bell; Stacey D. Scott; R.V. Budny; E. S. Marmar; J. A. Snipes; J. L. Terry; S. H. Batha; R. E. Bell; M. Bitter; C.E. Bush; Z. Chang; D. S. Darrow; D. Ernst; E. D. Fredrickson; B. Grek; H. W. Herrmann; K. W. Hill; A. Janos; D.L. Jassby; F. Jobes; D. Johnson; L. C. Johnson; F. W. Levinton; David Mikkelsen; D. Mueller; D. K. Owens; H.K. Park; A. T. Ramsey

In the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] a substantial improvement in fusion performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive conditioning of the limiter with lithium. This combination has resulted in not only significantly higher global energy confinement times than have previously been obtained in high current supershots, but also in the highest central ratio of thermonuclear fusion output power to input power observed to date.


Fusion Technology | 1992

Status and plans for TFTR

R.J. Hawryluk; D. Mueller; J. Hosea; Cris W. Barnes; Michael Beer; M.G. Bell; R. Bell; H. Biglari; M. Bitter; R. Boivin; N. Bretz; R. V. Budny; C.E. Bush; Liu Chen; C. Z. Cheng; Steven C. Cowley; D. S. Dairow; P.C. Efthimion; R. J. Fonck; E. D. Fredrickson; H. P. Furth; G. J. Greene; B. Grek; L. Grisham; G. W. Hammett; W.W. Heidbrink; K. W. Hill; D. J. Hoffman; R. Hulse; H. Hsuan

AbstractRecent research on TFTR has emphasized optimization of performance in deuterium plasmas, transport studies and studies of energetic ion and fusion product physics in preparation for the D-T experiments that will commence in July of 1993. TFTR has achieved full hardware design parameters, and the best TFTR discharges in deuterium are projected to QDT of 0.3 to 0.5.The physics phenomena that will be studied during the D-T phase will include: tritium particle confinement and fueling, ICRF heating with tritium, species scaling with tritium, collective alpha-particle instabilities, alpha heating of the plasma and helium ash buildup. It is important for the fusion program that these physics issues be addressed to identify regimes of benign alpha behavior, and to develop techniques to actively stabilize or control instabilities driver by collective alpha effects.

Collaboration


Dive into the A. Janos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.G. Bell

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Taylor

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

R.V. Budny

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge