Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. M. Kozlovsky is active.

Publication


Featured researches published by A. M. Kozlovsky.


Stratigraphy and Geological Correlation | 2008

Geochronology of igneous rocks and formation of the Late Paleozoic south Mongolian active margin of the Siberian continent

V. V. Yarmolyuk; V. I. Kovalenko; E. B. Sal’nikova; V. P. Kovach; A. M. Kozlovsky; A. B. Kotov; V. I. Lebedev

The succession of magmatic events associated with development of the Early Carboniferous-Early Permian marginal continental magmatic belt of southern Mongolia is studied. In the belt structure there are defined the successive rock complexes: the older one represented by differentiated basalt-andesite-rhyodacite series and younger bimodal complex of basalt-comendite-trachyrhyolite composition. The granodiorite-plagiogranite and banatite (diorite-monzonite-granodiorite) plutonic massifs are associated with the former, while peralkaline granite massifs are characteristic of the latter. First systematic geochronological study of igneous rock associations is performed to establish time succession and structural position of both complexes. Geochronological results and geological relations between rocks of the bimodal and differentiated complexes showed first that rocks of the differentiated complex originated 350 to 330 Ma ago at the initial stage of development of the marginal continental belt. This is evident from geochronological dates obtained for the Adzh-Bogd and Edrengiyn-Nuruu massifs and for volcanic associations of the complex. The dates are consistent with paleontological data. The bimodal association was formed later, 320 to 290 Ma ago. The time span separating formation of two igneous complexes ranges from several to 20–30 m.y. in different areas of the marginal belt. The bimodal magmatism was interrelated with rifting responsible for development of the Gobi-Tien Shan rift zone in the belt axial part and the Main Mongolian lineament along the belt northern boundary. Loci of bimodal rift magmatism likely migrated with time: the respective magmatic activity first initiated on the west of the rift system and then advanced gradually eastward with development of rift structures. Normal granitoids untypical but occurring nevertheless among the products of rift magmatism in addition to peralkaline massifs are assumed to have been formed, when the basic magmatism associated with rifting stimulated crustal anatexis and generation of crustal granitoid magmas under specific conditions of rifting within the active continental margin.


Geotectonics | 2012

Mechanisms of continental crust formation in the Central Asian Foldbelt

V. V. Yarmolyuk; V. P. Kovach; I. K. Kozakov; A. M. Kozlovsky; A. B. Kotov; E. Yu. Rytsk

Geological and isotopic study of rocks occurring in the Early and Late Baikalian, Caledonian, Hercynian, and Indosinian fold regions of Central Asia is carried out. The juvenile crust formation occurred in these fold regions have determined the systematic differences in isotopic compositions of the crust. In the course of the subsequent (postaccretion) evolution, the crust of these domains underwent multiple reworking. These processes were accompanied by variations in the Nd isotopic compositions of the crust, which, in turn, are recorded in the isotopic compositions of granites and felsic volcanics as products of crust melting. Three types of crust differing in Nd isotopic composition and structure and, as a consequence, in formation mechanisms, are distinguished. The isotopically homogeneous crust is a source of igneous rocks with constant model Nd isotopic age (TNd(DM2st)) irrespective of the age of the crustal igneous rocks. These are the isotopic provinces, the crust of which remained isolated from addition of alien materials during postaccretion evolution. The axial zone of the Hercynides in the Central Asian Foldbelt is an example. The isotopically heterogeneous layered crust consists of fragments differing in isotopic composition. The products of its melting are characterized by widely scattered ɛNd(T) and (TNd(DM2st). The appearance of alien sources of melt is considered in terms of underplating. This mechanism develops either due to subduction of the juvenile oceanic lithosphere beneath the mature continental lithosphere at convergent boundaries or as a result of plume-lithosphere interaction. The first mechanism operated during the formation of granitoids pertaining to the Tuva-Mongolia microcontinent. The second mechanism was responsible for the formation of batholiths in the zonal Hangay, Barguzin, and Mongolia-Transbaikalia magmatic fields. The isotopically heterogeneous mixed crust is composed of fragments differing in isotopic composition, which are tectonically mixed, resulting in the formation of an isotopically uniform reservoir in the domain of magma generation. As a result, the products of melting acquire isotopic parameters substantially distinct from the juvenile rocks of the corresponding structural zone. The formation of such a crust is related to the tectonic delamination, which provides for juxtaposition and a high degree of tectonic mingling of heterogeneous fragments at deep levels. The Caledonides of the Central Asian Foldbelt are characterized by such a mechanism of crust formation.


Doklady Earth Sciences | 2008

Late Riphean alkali granites of the Zabhan microcontinent: Evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian Fold belt

V. V. Yarmolyuk; V. I. Kovalenko; I. V. Anisimova; E. B. Sal’nikova; V. P. Kovach; I. K. Kozakov; A. M. Kozlovsky; E. A. Kudryashova; A. B. Kotov; Yu. V. Plotkina; L. B. Terent’eva; S. Z. Yakovleva

The estimation of chronological boundaries in the geological history of the Rodinia supercontinent, in particular, the age of its breakup is far from a final solution. The enormous size of the supercontinent rules out synchronization of geological events throughout its territory. In addition, the estimation is complicated by unreliable reconstructions of positions of particular cratons within the supercontinent and a shortage of geochronological data on substantiation of the timing of breakup in separate parts of Rodinia. Most likely, this was a long-term process similar to that of the breakup of Pangea, which lasted for almost 150 Ma from the Early Jurassic to the Early Cenozoic [1]. The long-term character of these events is evidenced by the available geochronological data on the processes of rifting that initiated the breakup in various parts of Rodinia. For example, according to the reconstruction [2], two age levels of rifting are established beyond the Laurasian part of the supercontinent. The older event occurred from 830 to 795 Ma ago. The younger event (780‐ 745 Ma ago) completed the breakup of the continental lithosphere. The Laurasian part of Rodinia was broken into the Siberian and Laurentian continents 720‐ 630 Ma ago [3]. The breakup of Rodinia promoted the origin of the Paleoasian ocean, the evolution of which produced the Central Asian Fold belt (CAFB). The terranes (microcontinents) of the Precambrian crust within the fold belt are regarded as fragments of supercontinent margins [3]. Such an interpretation is supported by structural and historical similarities of the terranes with some continental massifs in Rodinia and by wide occurrence of shelf complexes therein. However, the timing of separation of these terranes from the supercontinent and their initial location remain uncertain. In this communication, new data on the isotopic age and composition of the Late Riphean alkali granites of the Zabhan Terrane established in the CAFB are reported for the first time and the timing of the breakup and approximate position of this microcontinent in Rodinia is outlined. Geological characteristics. The Zabhan microcontinent (Fig. 1) represents terranes with an Early Precambrian basement, which are rare in the CAFB. The oldest metamorphic rocks of the Baidarik Block are subdivided into the Upper Archean Baidarag and the Lower Proterozoic Bumbuger crystalline complexes [4]. The stages of the microcontinent evolution are broadly correlated with those of the North Chinese and Siberian cratons [4]. The collisional processes responsible for the formation of the main tectonic units of these cratons and the microcontinent occurred almost synchronously 1.90‐1.85 Ga ago. In the northeast, the basement rocks are unconformably overlapped by primarily greenschist-facies rocks of the Ul’dzit-Gol Complex (metasandstones, black shales, and marmorized dolomites) of presumably Middle‐lower Upper Riphean age. Based on the K‐Ar actinolite dating, the age of greenschist-facies metamorphism of rocks of this complex is estimated at ~840 Ma [5]. In the western part of the microcontinent, the basement rocks are overlain by gently dipping subaerial volcanics of the Zabhan Group [6]. They are composed of virtually unmetamorphosed violet, black, and redbrown subaerial volcanic glasses, vitreous rhyodacites and trachyrhyolites, as well as ignimbrites with rare small feldspar and quartz phenocrysts. The subordinate basic and intermediate volcanic rocks are usually confined to the base of the group and to its roof in some places [6]. Their share increases toward the western


Petrology | 2013

Late paleozoic-Early Mesozoic within-plate magmatism in North Asia: traps, rifts, giant batholiths, and the geodynamics of their origin

V. V. Yarmolyuk; M. I. Kuzmin; A. M. Kozlovsky

A number of large areas of igneous provinces produced in North Asia in the Late Paleozoic and Early Mesozoic include Siberian and Tarim traps and giant rift systems. Among them, the Central Asian Rift System (CARS) has the most complicated structure, evolved during the longest time, and is a large (3000 × 600 km) latitudinally oriented belt of rift zones extending from Transbaikalia and Mongolia to Middle Asia and including the Tarim traps in western China. CARS was produced in the Late Carboniferous, and its further evolution was associated with the lateral migration of rifting zones; it ended in the Early Jurassic and lasted for approximately 110 Ma. CARS was produced on an active continental margin of the Siberian continent and is noted for largest batholiths, which were emplaced simultaneously with rifting. The batholiths are surrounded by rift zones and compose, together with them, concentrically zoned magmatic areas, with crustal (granitoid) magmatism focused within their central portions, whereas mantle (rift-related) magmatism is predominant in troughs and grabens in peripheral zones. The batholiths show geological and isotopic geochemical evidence that their granitoids were produced by the anatexis of the host rocks at active involvement of mantle magmas. Zonal magmatic areas of the type are viewed as analogues of large igneous provinces formed in the environments characteristic of active continental margins. Large within-plate magmatic provinces in North Asia are thought to have been generated in relation to the overlap of at least two mantle plumes by the Siberian continent during its movement above the hot mantle field. In the continental lithosphere, mantle plumes initiated within-plate magmatic activity and facilitated rifting and the generation of traps and alkaline basite and alkali-salic magmatic associations. Because of the stressed states during collision of various type in the continental margin, the mantle melts did not ascend higher than the lowest crustal levels. The thermal effect of these melts on the crustal rocks induced anatexis and eventually predetermined the generation of the batholiths.


Petrology | 2008

Crust-forming processes in the Hercynides of the Central Asian Foldbelt

V. V. Yarmolyuk; V. I. Kovalenko; A. M. Kozlovsky; V. P. Kovach; E. B. Sal’nikova; D. V. Kovalenko; A. B. Kotov; E. A. Kudryashova; V. I. Lebedev; G. Eenzhin

The paper reports data on the evolutionary history of magmatism, its conditions, and sources in the process of the development of the Southern Mongolian Hercynides during the pre-accretion, continental-margin, and rifting stages within the time span from the Silurian to Early Permian. The Hercynian continental crust in the southern Mongolian segment of the Central Asian Foldbelt (CAFB) was determined to have grown in the environment of ensimatic island arcs, backarc basins, spreading centers, and oceanic islands or plateaus, with material coming from the depleted and, perhaps, also enriched mantle sources in the open ocean that surrounded the Siberian paleocontinent on the side of the Caledonian margin. This made it possible to recognize the Early-Middle Paleozoic epoch of juvenile crustal growth in CAFB and the corresponding isotopic crustal province with a total area of more than 200 thousand km2. The principal differences between the composition and structure of the blocks surrounding the Hercynian regions (Caledonides in the Gobi Altai and Grenwillides in the South Gobi microcontinent) testify that the southern margin of the Caledonian Siberian continent and the Grenvillides of the South Gobi microcontinent had different geological histories and were spatially separated. The structural complex of the Paleoasian ocean, including the terranes of the South Gobi microcontinent, were transformed into a continental block in the latest Devonian-earliest Carboniferous, in relation with accretion processes, folding, metamorphism, and tectonic delamination along the boundaries of structurally heterogeneous domains. The subsequent recycling of the crust by magmatic processes was related to the development of an active continental margin (ACM). The development of an ACM in the Hercynides resulted from and was a continuation of the motions of the continental and oceanic lithospheric plates, i.e., processes that brought about the Hercynian accretion. The evolution history of the ACM was subdivided into two stages: early (a continental-margin stage proper) and late (rifting stage). The rocks of the early stage were produced at 350–330 Ma and compose a differentiated basalt-andesite-rhyodacite complex and related massifs of the granodiorite-plagiogranite and banatite (diorite-monzonite-granodiorite) associations. During the rifting stage at 320–290 Ma, a bimodal basalt-comendite-trachyrhyolite association was formed, along with accompanying alkali granite massifs. In the southern Mongolian segment of the Hercynides, the rocks of the rifting stage compose two subparallel rift zones: Gobi-Tien Shan, which extends along the boundaries of the South Gobi microcontinent, and the Main Mongolian lineament, which marks the boundaries between the Hercynides and Caledonides in the CAFB. The rift structures are made up of alkali granitoids and normal-alkalinity granitoids, which are atypical of rift zones. Their genesis is thought to have been related to crustal anatexis, a process that was triggered by rift-related magmas at an unusual combination of rifting and ACM tectonic setting. The basic rocks of the rift associations have geochemical signatures atypical of continental rifting. They show Ta and Nb minima and K and Pb maxima, as is typical of rocks generated at convergent plate boundaries. Nevertheless, the broad variations in the concentrations and ratios of some major and incompatible trace elements and in the Sr, Nd, and O isotopic composition of the rift basaltoids allowed us to distinguish their high-and low-Ti varieties, which were produced with the participation of three mantle sources: depleted mantle similar to the source of basalts in midoceanic ridges, enriched mantle like the source of basalts in oceanic islands, and the mantle material of the metasomatized mantle wedge. The origin of andesites in the rift zones is explained by the contamination of mantle basaltoid melts with sialic (predominantly sedimentary) material of the continental crust or the assimilation of anatectic partial granite melts.


Petrology | 2011

Crystalline complexes of the Tarbagatai block of the Early Caledonian superterrane of Central Asia

I. K. Kozakov; A. M. Kozlovsky; V. V. Yarmolyuk; V. P. Kovach; E. V. Bibikova; T. I. Kirnozova; Yu. V. Plotkina; N. Yu. Zagornaya; M. M. Fugzan; Ch. Erdenejargal; V. I. Lebedev; G. Eenjin

The oldest crystalline complexes of the Early Caledonian superterrane of Central Asia were formed in the Early Precambrian. They are exposed in the basement of microcontinents, which represent old cratonic fragments. Among the latters are the crystalline complexes of the Tarbagatai block previously ascribed to the Dzabkhan microcontinent. It was shown that the crystalline complexes of the Tarbagatai block have a heterogeneous structure, consisting of the Early Precambrian and later Riphean lithotectonic complexes. Structurally, the Early Precambrian complexes are made up of tectonic sheets of gneisses, migmatites, and gneiss granites of the Ider Complex that are cut by gabbroanorthosite massif. The Riphean Jargalant Complex comprises alternating hornblende crystalline schists and biotite (sometimes sillimanite-bearing) gneisses with marble horizons. The upper age boundary of the Riphean Complex is determined by the subautochthonous granitoids with age about 810 Ma. The presence of the Riphean high-grade rocks indicates that structures with newly formed crust were formed in the paleooceanic framing of the Early Precambrian blocks of the Rodinia supercontinent by the Mid-Late Riphean. Divergence that began at that time within old Rodinian cratons and caused rifting and subsequent break-up of the supercontinent was presumably changed by convergence in the paleooceanic area.


Petrology | 2006

Sources of basaltoid magmas in rift settings of an active continental margin: Example from the bimodal association of the Noen and Tost ranges of the Late Paleozoic Gobi-Tien Shan rift zone, southern Mongolia

A. M. Kozlovsky; V. V. Yarmolyuk; V. M. Savatenkov; V. P. Kovach

The bimodal volcanoplutonic (basalt-peralkaline rhyolite with peralkaline granites) association of the Noen and Tost ranges was formed 318 Ma ago in the Gobi-Tien Shan rift zone of the Late Paleozoic-Early Mesozoic central Asian rift system, the development of which was related to the movement of the continental lithosphere over a mantle hot spot. A specific feature of the Late Paleozoic rifting was that it occurred within the Middle-Late Paleozoic active continental margin of the northern Asian paleocontinent. Continental margin magmatism was followed after a short time delay by the magmatism of the Gobi-Tien Shan rift zone, which was located directly in the margin of the paleocontinent. Such a geodynamic setting of the rift zone was reflected in the geochemical characteristics of rift-related rocks. The distribution of major elements and compatible trace elements in the rift-related basic and intermediate rocks corresponds to a crystallization differentiation series. The distribution of incompatible trace elements suggests contributions from several sources. This is also supported by the heterogeneity of Sr and Nd isotopic compositions of the rift-related basaltoids: εNd(T) ranges from 4.4 to 6.7, and (87Sr/86Sr)0, from 0.70360 to 0.70427. The geochemical characteristics of the rift-related basaltoids of the Noen and Tost ranges are not typical of rift settings (negative anomalies in Nb and Ta and positive anomalies in K and Pb) and suggest a significant role of the rocks of a metasomatized mantle wedge in their source. In addition, there are high-titanium rocks among the rift-related basaltoids, whose geochemical characteristics approach those of the basalts of mid-ocean ridges and ocean islands. This allowed us to conclude that the compositional variations of the rift-related basaltoids of the Noen and Tost ranges were controlled by three magma sources: the enriched mantle, depleted mantle (high-titanium basaltoids), and metasomatized mantle wedge (medium-Ti basaltoids). The medium-titanium basaltoids were formed in equilibrium with spinel peridotites, whereas the high-titanium magmas were formed at deeper levels both in the spinel and garnet zones. It terms of geodynamics, the occurrence of three sources of the rift-related basaltoids of the Noen and Tost ranges was related to the ascent of a mantle plume with enriched geochemical characteristics beneath a continental margin, where its influence caused melting in the overlying depleted mantle and the metasomatized mantle wedge. The formation of rift-related andesites in the Noen and Tost ranges was explained by the contamination of mantle-derived basaltoid melts with sialic (mainly sedimentary) continental crustal materials or the assimilation of anatectic granitoid melts.


Journal of Volcanology and Seismology | 2007

Late Cretaceous-Early Cenozoic volcanism of Southern Mongolia: A trace of the South Khangai mantle hot spot

V. V. Yarmolyuk; E. A. Kudryashova; A. M. Kozlovsky; V. M. Savatenkov

The Gobi-Tien Shan volcanic area (in Southern Mongolia) is part of the South Khangai volcanic region (SKVR). The formation of its lava fields was related to three stages of volcanic activity: the Late Cretaceous (88–71 Myr), Paleocene-Early Eocene (62–47 Myr), and Early Oligocene (37–30 Myr). Volcanic occurrences of different age are represented by trachybasalt, trachyandesitobasalt, basanite, and melanephelinite with similar geochemical characteristics, which are also close to the geochemical characteristics of OIB basalt. The isotope composition (Sr, Nd) of the rocks indicates that the magma sources were formed as a result of mixing of a moderately depleted PREMA mantle and an EM-I mantle enriched in neodymium.The patterns of migration of volcanic centers of different ages over the area of interest have been studied. The earliest (Late Cretaceous) volcanic occurrences were concentrated mainly in the south of the area, the Paleocene-Early Eocene eruptions took place at the center of the area, and the Early Oligocene volcanism occurred in the northern area. The observed migration of the volcanic activity centers is related to lithospheric plate motions relative to a localized source of hot mantle (the South Khangai mantle hot spot), which controlled volcanic activity within SKVR. In the lithospheric structure of this region, local asthenospheric high, reaching a depth of ∼50 km, correspond to this hot spot.


Petrology | 2007

Trachytes, comendites, and pantellerites of the Late Paleozoic bimodal rift association of the Noen and Tost ranges, southern Mongolia: Differentiation and contamination of peralkaline salic melts

A. M. Kozlovsky; V. V. Yarmolyuk; V. I. Kovalenko; V. M. Savatenkov; T. A. Velivetskaya

The bimodal association of the Noen and Tost ranges is ascribed to the Gobi-Tien Shan rift zone and was formed 318 Ma ago at the continental margin of the North Asian paleocontinent. It is made up of volcanic series of alternating basalts and peralkaline rhyolites with subordinate trachytes, dike belts, and massifs of peralkaline granites. The association also includes a coeval massif of biotite granites. Based on Al2O3 and FeOtot contents, the peralkaline rhyolites are subdivided into comendites (FeOtot 1.5–5.7 wt %, Al2O3 10.5–15.4 wt %) and pantellerites (FeOtot 5.2–7.5 wt %, Al2O3 9.1–10.2 wt %). The peralkaline salic rocks of the bimodal association were formed by the crystallization differentiation of rift basaltic magmas combined with crustal assimilation. The comendites, pantellerites, and peralkaline granites inherited negative Nb and Ta and positive K and Pb anomalies from basalts. They are also similar to basalts in Nd isotope composition (ɛNd(T) = 5.5–7.4) and have nearly mantle oxygen isotope composition (δ18O = 5.9–7.3‰). The most differentiated and least contaminated rocks of the bimodal series of the Noen and Tost ranges are pantellerites. Calculations indicate that the fraction of the residual pantellerite melt was 8% or less of the parental basaltic magma. The comendites were derived from peralkaline salic melts by the assimilation of anatectic crustal melts compositionally similar to biotite granites. The formation of the latter within the Noen and Tost ranges is explained by the specific geodynamic position of the Gobi-Tien Shan rift zone, which was formed near a paleocontinental margin that evolved in an active margin regime shortly before the beginning of rifting.


Geotectonics | 2012

Convergent boundaries and related igneous and metamorphic complexes in caledonides of Central Asia

I. K. Kozakov; E. B. Sal’nikova; V. V. Yarmolyuk; A. M. Kozlovsky; V. P. Kovach; P. Ya. Azimov; I. V. Anisimova; V. I. Lebedev; G. Enjin; Ch. Erdenejargal; Yu. V. Plotkina; A. M. Fedoseenko; S. Z. Yakovleva

Fragments of the crystalline complexes where Vendian metamorphism of moderate and elevated pressure predated Early Paleozoic metamorphism have been established in the accretionary-collisional domain of the eastern segment of the Central Asian Foldbelt (Early Caledonian superterrane of Central Asia). The geodynamic setting of the Vendian (∼560–570 Ma) South Hangay metamorphic belt located in the junction zone of the Baydrag Block and the Late Riphean (∼665 Ma) ophiolite complex of the Bayanhongor Zone is considered. The origination of this belt was related to the formation of the convergent boundary in the framework of the Zabhan microcontinent about 570 Ma ago. At the same time, an island-arc complex was formed in the paleo-oceanic domain. Metamorphism of elevated pressure indicates that Vendian structures with sufficiently thick continental crust were formed in the framework of the continental blocks. Vendian metamorphism is also established in the Tuva-Mongolia Massif and the Kan Block of the Eastern Sayan. These data show that the Late Baikalian stage predated the evolution of the Early Caledonian superterrane of Central Asia. The development of its accretionary-collisional structure was accompanied by Late Cambrian-Early Ordovician low-pressure regional metamorphism. Granulite-facies conditions were reached only at the deep levels of the accretionary-collisional edifice. The outcrops of crystalline complexes in the southern framework of the Caledonian paleocontinent are regarded as fragments of the Early Paleozoic Central Mongolian metamorphic belt.

Collaboration


Dive into the A. M. Kozlovsky's collaboration.

Top Co-Authors

Avatar

V. V. Yarmolyuk

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. P. Kovach

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

I. K. Kozakov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. A. Kudryashova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. M. Savatenkov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

A. B. Kotov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. B. Sal’nikova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. I. Lebedev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. I. Kovalenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. V. Travin

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge