V. V. Yarmolyuk
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. V. Yarmolyuk.
Stratigraphy and Geological Correlation | 2008
V. V. Yarmolyuk; V. I. Kovalenko; E. B. Sal’nikova; V. P. Kovach; A. M. Kozlovsky; A. B. Kotov; V. I. Lebedev
The succession of magmatic events associated with development of the Early Carboniferous-Early Permian marginal continental magmatic belt of southern Mongolia is studied. In the belt structure there are defined the successive rock complexes: the older one represented by differentiated basalt-andesite-rhyodacite series and younger bimodal complex of basalt-comendite-trachyrhyolite composition. The granodiorite-plagiogranite and banatite (diorite-monzonite-granodiorite) plutonic massifs are associated with the former, while peralkaline granite massifs are characteristic of the latter. First systematic geochronological study of igneous rock associations is performed to establish time succession and structural position of both complexes. Geochronological results and geological relations between rocks of the bimodal and differentiated complexes showed first that rocks of the differentiated complex originated 350 to 330 Ma ago at the initial stage of development of the marginal continental belt. This is evident from geochronological dates obtained for the Adzh-Bogd and Edrengiyn-Nuruu massifs and for volcanic associations of the complex. The dates are consistent with paleontological data. The bimodal association was formed later, 320 to 290 Ma ago. The time span separating formation of two igneous complexes ranges from several to 20–30 m.y. in different areas of the marginal belt. The bimodal magmatism was interrelated with rifting responsible for development of the Gobi-Tien Shan rift zone in the belt axial part and the Main Mongolian lineament along the belt northern boundary. Loci of bimodal rift magmatism likely migrated with time: the respective magmatic activity first initiated on the west of the rift system and then advanced gradually eastward with development of rift structures. Normal granitoids untypical but occurring nevertheless among the products of rift magmatism in addition to peralkaline massifs are assumed to have been formed, when the basic magmatism associated with rifting stimulated crustal anatexis and generation of crustal granitoid magmas under specific conditions of rifting within the active continental margin.
Geotectonics | 2011
E. Yu. Rytsk; V. P. Kovach; V. V. Yarmolyuk; V. I. Kovalenko; E. S. Bogomolov; A. B. Kotov
New data on the geology and tectonics of the main structural elements of the East Transbaikalian segment of the Central Asian Foldbelt are discussed. Correlation charts of the main stratified and igneous complexes are compiled. The rocks of the Baikal-Patom and Baikal-Muya belts, as well as the Barguzin-Vitim Superterrane, are characterized by new Nd isotopic data, which have allowed us to establish the sources of these rocks, to separate isotopic provinces, and to distinguish two stages of crust-forming processes: the Early Baikalian (1.0–0.8 Ga) and the Late Baikalian (0.70–0.62 Ga). The Early Baikalian crust was formed in relatively narrow and spatially isolated troughs of the Baikal-Muya Belt and probably in the Amalat Terrane, whereas the Late Baikalian continental crust was formed and reworked in the Karalon-Mamakan, Yana, and Katera-Uakit zones of the Baikal-Muya Belt. The Baikal-Patom Belt and most of the Anamakit-Muya Zone in the Baikal-Muya Belt are characterized by remobilization of the Early Precambrian continental crust and by a subordinate role of Late Riphean juvenile sources. Reworking of the mixed Late Riphean and Early Precambrian crustal sources is typical of the Barguzin-Vitim Superterrane. The origination and evolution of the continental crust in the studied region are considered in light of new data; alternative versions of paleogedynamic reconstructions are discussed.
Petrology | 2011
V. V. Yarmolyuk; V. P. Kovach; V. I. Kovalenko; E. B. Salnikova; A. M. Kozlovskii; A. B. Kotov; S. Z. Yakovleva; A. M. Fedoseenko
Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments. The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane was formed.
Petrology | 2011
V. P. Kovach; V. V. Yarmolyuk; V. I. Kovalenko; A. M. Kozlovskyi; A. B. Kotov; L. B. Terent’eva
Part II of this paper reports geochemical and Nd isotope characteristics of the volcanogenic and siliceous-terrigenous complexes of the Lake zone of the Central Asian Caledonides and associating granitoids of various ages. Geological, geochronological, geochemical, and isotopic data were synthesized with application to the problems of the sources and main mechanisms of continental crust formation and evolution for the Caledonides of the Central Asian orogenic belt. It was found that the juvenile sialic crust of the Lake zone was formed during the Vendian-Cambrian (approximately 570–490 Ma) in an environment of intraoceanic island arcs and oceanic islands from depleted mantle sources with the entrainment of sedimentary crustal materials into subduction zones and owing to the accretion processes of the amalgamation of paleoceanic and island arc complexes and Precambrian microcontinents, which terminated by ∼490 Ma. The source of primary melts for the low-Ti basalts, andesites, and dacites of the Lake zone ophiolites and island arc complexes was mainly the depleted mantle wedge above a subduction zone. In addition, an enriched plume source contributed to the genesis of the high-Ti basalts and gabbroids of oceanic plateaus. The source of terrigenous rocks associating with the volcanics was composed of materials similar in composition to the country rocks at a minor and varying role of ancient crustal materials introduced into the ocean basin owing to the erosion of Precambrian microcontinents. The sedimentary rocks of the accretionary prism were derived by the erosion of mainly juvenile island arc sources with a minor contribution of rocks of the mature continental crust. The island arc and accretion stages of the development of the Lake zone (∼540–590 Ma) were accompanied by the development of high- and low-alumina sodic granitoids through the melting at various depths of depleted mantle reservoirs (metabasites of a subducted oceanic slab and a mantle wedge) and at the base of the island arc at the subordinate role of ancient crustal rocks. The melts of the postaccretion granitoids of the Central Asian Caledonides were derived mainly from the rocks of the juvenile Caledonian crust at an increasing input of an ancient crustal component owing to the tectonic mixing of the rocks of ophiolitic and island arc complexes and microcontinents. The obtained results indicate that the Vendian-Early Paleozoic stage of the evolution of the Central Asian orogenic belt was characterized by the extensive growth of juvenile continental crust and allow us to distinguish a corresponding stage of juvenile crust formation.
Geotectonics | 2012
V. V. Yarmolyuk; V. P. Kovach; I. K. Kozakov; A. M. Kozlovsky; A. B. Kotov; E. Yu. Rytsk
Geological and isotopic study of rocks occurring in the Early and Late Baikalian, Caledonian, Hercynian, and Indosinian fold regions of Central Asia is carried out. The juvenile crust formation occurred in these fold regions have determined the systematic differences in isotopic compositions of the crust. In the course of the subsequent (postaccretion) evolution, the crust of these domains underwent multiple reworking. These processes were accompanied by variations in the Nd isotopic compositions of the crust, which, in turn, are recorded in the isotopic compositions of granites and felsic volcanics as products of crust melting. Three types of crust differing in Nd isotopic composition and structure and, as a consequence, in formation mechanisms, are distinguished. The isotopically homogeneous crust is a source of igneous rocks with constant model Nd isotopic age (TNd(DM2st)) irrespective of the age of the crustal igneous rocks. These are the isotopic provinces, the crust of which remained isolated from addition of alien materials during postaccretion evolution. The axial zone of the Hercynides in the Central Asian Foldbelt is an example. The isotopically heterogeneous layered crust consists of fragments differing in isotopic composition. The products of its melting are characterized by widely scattered ɛNd(T) and (TNd(DM2st). The appearance of alien sources of melt is considered in terms of underplating. This mechanism develops either due to subduction of the juvenile oceanic lithosphere beneath the mature continental lithosphere at convergent boundaries or as a result of plume-lithosphere interaction. The first mechanism operated during the formation of granitoids pertaining to the Tuva-Mongolia microcontinent. The second mechanism was responsible for the formation of batholiths in the zonal Hangay, Barguzin, and Mongolia-Transbaikalia magmatic fields. The isotopically heterogeneous mixed crust is composed of fragments differing in isotopic composition, which are tectonically mixed, resulting in the formation of an isotopically uniform reservoir in the domain of magma generation. As a result, the products of melting acquire isotopic parameters substantially distinct from the juvenile rocks of the corresponding structural zone. The formation of such a crust is related to the tectonic delamination, which provides for juxtaposition and a high degree of tectonic mingling of heterogeneous fragments at deep levels. The Caledonides of the Central Asian Foldbelt are characterized by such a mechanism of crust formation.
Doklady Earth Sciences | 2008
V. V. Yarmolyuk; V. I. Kovalenko; I. V. Anisimova; E. B. Sal’nikova; V. P. Kovach; I. K. Kozakov; A. M. Kozlovsky; E. A. Kudryashova; A. B. Kotov; Yu. V. Plotkina; L. B. Terent’eva; S. Z. Yakovleva
The estimation of chronological boundaries in the geological history of the Rodinia supercontinent, in particular, the age of its breakup is far from a final solution. The enormous size of the supercontinent rules out synchronization of geological events throughout its territory. In addition, the estimation is complicated by unreliable reconstructions of positions of particular cratons within the supercontinent and a shortage of geochronological data on substantiation of the timing of breakup in separate parts of Rodinia. Most likely, this was a long-term process similar to that of the breakup of Pangea, which lasted for almost 150 Ma from the Early Jurassic to the Early Cenozoic [1]. The long-term character of these events is evidenced by the available geochronological data on the processes of rifting that initiated the breakup in various parts of Rodinia. For example, according to the reconstruction [2], two age levels of rifting are established beyond the Laurasian part of the supercontinent. The older event occurred from 830 to 795 Ma ago. The younger event (780‐ 745 Ma ago) completed the breakup of the continental lithosphere. The Laurasian part of Rodinia was broken into the Siberian and Laurentian continents 720‐ 630 Ma ago [3]. The breakup of Rodinia promoted the origin of the Paleoasian ocean, the evolution of which produced the Central Asian Fold belt (CAFB). The terranes (microcontinents) of the Precambrian crust within the fold belt are regarded as fragments of supercontinent margins [3]. Such an interpretation is supported by structural and historical similarities of the terranes with some continental massifs in Rodinia and by wide occurrence of shelf complexes therein. However, the timing of separation of these terranes from the supercontinent and their initial location remain uncertain. In this communication, new data on the isotopic age and composition of the Late Riphean alkali granites of the Zabhan Terrane established in the CAFB are reported for the first time and the timing of the breakup and approximate position of this microcontinent in Rodinia is outlined. Geological characteristics. The Zabhan microcontinent (Fig. 1) represents terranes with an Early Precambrian basement, which are rare in the CAFB. The oldest metamorphic rocks of the Baidarik Block are subdivided into the Upper Archean Baidarag and the Lower Proterozoic Bumbuger crystalline complexes [4]. The stages of the microcontinent evolution are broadly correlated with those of the North Chinese and Siberian cratons [4]. The collisional processes responsible for the formation of the main tectonic units of these cratons and the microcontinent occurred almost synchronously 1.90‐1.85 Ga ago. In the northeast, the basement rocks are unconformably overlapped by primarily greenschist-facies rocks of the Ul’dzit-Gol Complex (metasandstones, black shales, and marmorized dolomites) of presumably Middle‐lower Upper Riphean age. Based on the K‐Ar actinolite dating, the age of greenschist-facies metamorphism of rocks of this complex is estimated at ~840 Ma [5]. In the western part of the microcontinent, the basement rocks are overlain by gently dipping subaerial volcanics of the Zabhan Group [6]. They are composed of virtually unmetamorphosed violet, black, and redbrown subaerial volcanic glasses, vitreous rhyodacites and trachyrhyolites, as well as ignimbrites with rare small feldspar and quartz phenocrysts. The subordinate basic and intermediate volcanic rocks are usually confined to the base of the group and to its roof in some places [6]. Their share increases toward the western
Petrology | 2013
V. V. Yarmolyuk; M. I. Kuzmin; A. M. Kozlovsky
A number of large areas of igneous provinces produced in North Asia in the Late Paleozoic and Early Mesozoic include Siberian and Tarim traps and giant rift systems. Among them, the Central Asian Rift System (CARS) has the most complicated structure, evolved during the longest time, and is a large (3000 × 600 km) latitudinally oriented belt of rift zones extending from Transbaikalia and Mongolia to Middle Asia and including the Tarim traps in western China. CARS was produced in the Late Carboniferous, and its further evolution was associated with the lateral migration of rifting zones; it ended in the Early Jurassic and lasted for approximately 110 Ma. CARS was produced on an active continental margin of the Siberian continent and is noted for largest batholiths, which were emplaced simultaneously with rifting. The batholiths are surrounded by rift zones and compose, together with them, concentrically zoned magmatic areas, with crustal (granitoid) magmatism focused within their central portions, whereas mantle (rift-related) magmatism is predominant in troughs and grabens in peripheral zones. The batholiths show geological and isotopic geochemical evidence that their granitoids were produced by the anatexis of the host rocks at active involvement of mantle magmas. Zonal magmatic areas of the type are viewed as analogues of large igneous provinces formed in the environments characteristic of active continental margins. Large within-plate magmatic provinces in North Asia are thought to have been generated in relation to the overlap of at least two mantle plumes by the Siberian continent during its movement above the hot mantle field. In the continental lithosphere, mantle plumes initiated within-plate magmatic activity and facilitated rifting and the generation of traps and alkaline basite and alkali-salic magmatic associations. Because of the stressed states during collision of various type in the continental margin, the mantle melts did not ascend higher than the lowest crustal levels. The thermal effect of these melts on the crustal rocks induced anatexis and eventually predetermined the generation of the batholiths.
Geochemistry International | 2010
V. B. Naumov; V. I. Kovalenko; V. A. Dorofeeva; A. V. Girnis; V. V. Yarmolyuk
We compiled a database containing more than 480000 determinations for 73 elements in melt inclusions in minerals and quenched glasses of volcanic rocks. These data were used to estimate the mean contents of major, volatile, and trace elements in igneous melts from main geodynamic settings. The following settings were distinguished: (I) oceanic spreading zones (mid-ocean ridges); (II) zones of mantle plume activity on oceanic plates (oceanic islands and plateaus); (III) and (IV) settings related to subduction processes, including (III) zones of island-arc magmatism generated on the oceanic crust and (IV) magmatic zones of active continental margins involving the continental crust into magma generation processes; (V) intracontinental rifts and continental hot spots; and (VI) back-arc spreading centers. The histogram of SiO2 contents in the natural igneous melts of all geodynamic settings exhibits a bimodal distribution with two maxima at SiO2 contents of 50–52 wt % and 72–74 wt %. The range 62–64 wt % SiO2 comprises the minimum number of determinations. Primitive mantle-normalized spidergrams were constructed for average contents of elements in the igneous melts of basic, intermediate, and acidic compositions from settings I–V. The diagrams reflect the characteristic features of melt compositions for each geodynamic setting. On the basis of the analysis of data on the composition of melt inclusions and glasses of rocks, average ratios of incompatible trace and volatile components (H2O/Ce, K2O/Cl, Nb/U, Ba/Rb, Ce/Pb, etc.) were estimated for the igneous melts of all of the settings. Variations of these ratios were determined, and it was shown that, in most cases, the ratios of incompatible elements are significantly different between settings. The difference is especially pronounced for the ratios of elements with different degrees of incompatibility (e.g., Nb/Yb) and for some ratios with volatile components (e.g., K2O/H2O).
Petrology | 2008
V. V. Yarmolyuk; V. I. Kovalenko; A. M. Kozlovsky; V. P. Kovach; E. B. Sal’nikova; D. V. Kovalenko; A. B. Kotov; E. A. Kudryashova; V. I. Lebedev; G. Eenzhin
The paper reports data on the evolutionary history of magmatism, its conditions, and sources in the process of the development of the Southern Mongolian Hercynides during the pre-accretion, continental-margin, and rifting stages within the time span from the Silurian to Early Permian. The Hercynian continental crust in the southern Mongolian segment of the Central Asian Foldbelt (CAFB) was determined to have grown in the environment of ensimatic island arcs, backarc basins, spreading centers, and oceanic islands or plateaus, with material coming from the depleted and, perhaps, also enriched mantle sources in the open ocean that surrounded the Siberian paleocontinent on the side of the Caledonian margin. This made it possible to recognize the Early-Middle Paleozoic epoch of juvenile crustal growth in CAFB and the corresponding isotopic crustal province with a total area of more than 200 thousand km2. The principal differences between the composition and structure of the blocks surrounding the Hercynian regions (Caledonides in the Gobi Altai and Grenwillides in the South Gobi microcontinent) testify that the southern margin of the Caledonian Siberian continent and the Grenvillides of the South Gobi microcontinent had different geological histories and were spatially separated. The structural complex of the Paleoasian ocean, including the terranes of the South Gobi microcontinent, were transformed into a continental block in the latest Devonian-earliest Carboniferous, in relation with accretion processes, folding, metamorphism, and tectonic delamination along the boundaries of structurally heterogeneous domains. The subsequent recycling of the crust by magmatic processes was related to the development of an active continental margin (ACM). The development of an ACM in the Hercynides resulted from and was a continuation of the motions of the continental and oceanic lithospheric plates, i.e., processes that brought about the Hercynian accretion. The evolution history of the ACM was subdivided into two stages: early (a continental-margin stage proper) and late (rifting stage). The rocks of the early stage were produced at 350–330 Ma and compose a differentiated basalt-andesite-rhyodacite complex and related massifs of the granodiorite-plagiogranite and banatite (diorite-monzonite-granodiorite) associations. During the rifting stage at 320–290 Ma, a bimodal basalt-comendite-trachyrhyolite association was formed, along with accompanying alkali granite massifs. In the southern Mongolian segment of the Hercynides, the rocks of the rifting stage compose two subparallel rift zones: Gobi-Tien Shan, which extends along the boundaries of the South Gobi microcontinent, and the Main Mongolian lineament, which marks the boundaries between the Hercynides and Caledonides in the CAFB. The rift structures are made up of alkali granitoids and normal-alkalinity granitoids, which are atypical of rift zones. Their genesis is thought to have been related to crustal anatexis, a process that was triggered by rift-related magmas at an unusual combination of rifting and ACM tectonic setting. The basic rocks of the rift associations have geochemical signatures atypical of continental rifting. They show Ta and Nb minima and K and Pb maxima, as is typical of rocks generated at convergent plate boundaries. Nevertheless, the broad variations in the concentrations and ratios of some major and incompatible trace elements and in the Sr, Nd, and O isotopic composition of the rift basaltoids allowed us to distinguish their high-and low-Ti varieties, which were produced with the participation of three mantle sources: depleted mantle similar to the source of basalts in midoceanic ridges, enriched mantle like the source of basalts in oceanic islands, and the mantle material of the metasomatized mantle wedge. The origin of andesites in the rift zones is explained by the contamination of mantle basaltoid melts with sialic (predominantly sedimentary) material of the continental crust or the assimilation of anatectic partial granite melts.
Petrology | 2011
I. K. Kozakov; A. M. Kozlovsky; V. V. Yarmolyuk; V. P. Kovach; E. V. Bibikova; T. I. Kirnozova; Yu. V. Plotkina; N. Yu. Zagornaya; M. M. Fugzan; Ch. Erdenejargal; V. I. Lebedev; G. Eenjin
The oldest crystalline complexes of the Early Caledonian superterrane of Central Asia were formed in the Early Precambrian. They are exposed in the basement of microcontinents, which represent old cratonic fragments. Among the latters are the crystalline complexes of the Tarbagatai block previously ascribed to the Dzabkhan microcontinent. It was shown that the crystalline complexes of the Tarbagatai block have a heterogeneous structure, consisting of the Early Precambrian and later Riphean lithotectonic complexes. Structurally, the Early Precambrian complexes are made up of tectonic sheets of gneisses, migmatites, and gneiss granites of the Ider Complex that are cut by gabbroanorthosite massif. The Riphean Jargalant Complex comprises alternating hornblende crystalline schists and biotite (sometimes sillimanite-bearing) gneisses with marble horizons. The upper age boundary of the Riphean Complex is determined by the subautochthonous granitoids with age about 810 Ma. The presence of the Riphean high-grade rocks indicates that structures with newly formed crust were formed in the paleooceanic framing of the Early Precambrian blocks of the Rodinia supercontinent by the Mid-Late Riphean. Divergence that began at that time within old Rodinian cratons and caused rifting and subsequent break-up of the supercontinent was presumably changed by convergence in the paleooceanic area.