Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. McEvoy is active.

Publication


Featured researches published by A. McEvoy.


Review of Scientific Instruments | 2010

Diagnosing inertial confinement fusion gamma ray physics (invited).

H. W. Herrmann; Nelson M. Hoffman; D. C. Wilson; W. Stoeffl; Lucile S. Dauffy; Y. Kim; A. McEvoy; C. S. Young; J. M. Mack; C. J. Horsfield; M. S. Rubery; E. K. Miller; Zaheer Ali

The gamma reaction history (GRH) diagnostic is a multichannel, time-resolved, energy-thresholded γ-ray spectrometer that provides a high-bandwidth, direct-measurement of fusion reaction history in inertial confinement fusion implosion experiments. 16.75 MeV deuterium+tritium (DT) fusion γ-rays, with a branching ratio of the order of 10(-5)γ/(14 MeV n), are detected to determine fundamental burn parameters, such as nuclear bang time and burn width, critical to achieving ignition at the National Ignition Facility. During the tritium/hydrogen/deuterium ignition tuning campaign, an additional γ-ray line at 19.8 MeV, produced by hydrogen+tritium fusion with a branching ratio of unity, will increase the available γ-ray signal and may allow measurement of reacting fuel composition or ion temperature. Ablator areal density measurements with the GRH are also made possible by detection of 4.43 MeV γ-rays produced by inelastic scatter of DT fusion neutrons on (12)C nuclei in the ablating plastic capsule material.


Physics of Plasmas | 2009

Anomalous yield reduction in direct-drive deuterium/tritium implosions due to H3e additiona)

H. W. Herrmann; James R. Langenbrunner; J. M. Mack; J.H. Cooley; D. C. Wilson; S. C. Evans; T. J. Sedillo; G. A. Kyrala; S. E. Caldwell; C. S. Young; A. Nobile; Joseph R. Wermer; Stephen N. Paglieri; A. McEvoy; Y. Kim; S. H. Batha; C. J. Horsfield; D.W. Drew; Warren Garbett; M. S. Rubery; V. Yu. Glebov; S. Roberts; J. A. Frenje

Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the “factor of 2” degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf....


Journal of Physics: Conference Series | 2010

ICF gamma-ray reaction history diagnostics

H. W. Herrmann; C. S. Young; J. M. Mack; Y. Kim; A. McEvoy; S. C. Evans; T. J. Sedillo; S. H. Batha; M Schmitt; D. C. Wilson; J R Langenbrunner; Robert M. Malone; Morris I. Kaufman; Brian C. Cox; B. C. Frogget; E K Miller; Z A Ali; T. W. Tunnell; W. Stoeffl; C. J. Horsfield; M. S. Rubery

Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013–1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016–1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the expected burn widths of 10–20 ps associated with ignition. Multiple channels at each phase will allow for increased redundancy, reliability, accuracy and flexibility. In addition, inherent energy thresholding capability combined with this multiplicity will allow exploration of interesting gamma-ray physics well beyond the ignition campaign.


Physics of Plasmas | 2012

D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmasa)

Y. Kim; J. M. Mack; H. W. Herrmann; Cliff Young; Gerry Hale; S. E. Caldwell; Nelson M. Hoffman; Steve Evans; T. J. Sedillo; A. McEvoy; James R. Langenbrunner; H. H. Hsu; M. A. Huff; S. H. Batha; C. J. Horsfield; M. S. Rubery; Warren Garbett; W. Stoeffl; E. Grafil; Lee Allen Bernstein; J. A. Church; D. B. Sayre; M. Rosenberg; C. Waugh; H. G. Rinderknecht; M. Gatu Johnson; A. Zylstra; J. A. Frenje; D. T. Casey; R. D. Petrasso

A new deuterium-tritium (D-T) fusion gamma-to-neutron branching ratio [3H(d,γ)5He/3H(d,n)4He] value of (4.2 ± 2.0) × 10−5 was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement, conducted at the OMEGA laser facility located at the University of Rochester, was made for the first time using inertial confinement fusion (ICF) plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov γ-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values, which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICF D-T γ-ray and neutron ...


Review of Scientific Instruments | 2013

Monte Carlo validation experiments for the gas Cherenkov detectors at the National Ignition Facility and Omega

M. S. Rubery; C. J. Horsfield; Hartmut Herrmann; Y. Kim; J. M. Mack; C. S. Young; S. C. Evans; T. J. Sedillo; A. McEvoy; S. E. Caldwell; E. Grafil; W. Stoeffl; J. Milnes

The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear γ emissions from the implosion. Of primary interest are γ bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity γ Source (HIγS) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.


Review of Scientific Instruments | 2010

Development and characterization of sub-100 ps photomultiplier tubes

C. J. Horsfield; M. S. Rubery; J. M. Mack; C. S. Young; H. W. Herrmann; S. E. Caldwell; S. C. Evans; Y. Kim; A. McEvoy; J. Milnes; J. Howorth; B. Davis; P. M. O'Gara; I. Garza; E. K. Miller; W. Stoeffl; Zaheer Ali

We describe the evaluation of a microchannel plate (MCP) photomultiplier tube (PMT), incorporating a 3 μm pore MCP and constant voltage anode and cathode gaps. The use of the small pore size results in PMTs with response functions of the order of 85 ps full-width-half-maximum, while the constant electric field across the anode and cathode gaps produces a uniform response function over the entire operating range of the device. The PMT was characterized on a number of facilities and employed on gas Cherenkov detectors fielded on various deuterium tritium fuel (DT) implosions on the Omega Laser Facility at the University of Rochester. The Cherenkov detectors are part of diagnostic development to measure Gamma ray reaction history for DT implosions on the National Ignition Facility.


Review of Scientific Instruments | 2010

GEANT4 simulations of Cherenkov reaction history diagnostics

M. S. Rubery; C. J. Horsfield; H. W. Herrmann; Y. Kim; J. M. Mack; C. S. Young; S. E. Caldwell; S. C. Evans; A. McEvoy; E. K. Miller; W. Stoeffl; Zaheer Ali; J. Toebbe

This paper compares the results from a GEANT4 simulation of the gas Cherenkov detector 1 (GCD1) with previous simulations and experimental data from the Omega laser facility. The GCD1 collects gammas emitted during a deuterium-tritium capsule implosion and converts them, through several processes, to Cherenkov light. Photon signals are recorded using subnanosecond photomultiplier tubes, producing burn reaction histories. The GEANT4 GCD1 simulation is first benchmarked against ACCEPT, an integrated tiger series code, with good agreement. The simulation is subsequently compared with data from the Omega laser facility, where experiments have been performed to measure the effects of Hohlraum materials on reaction history signals, in preparation for experiments at the National Ignition Facility.


Physics of Plasmas | 2017

Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics

M. Gatu Johnson; A. Zylstra; A. Bacher; C. R. Brune; D. T. Casey; C.J. Forrest; H. W. Herrmann; M. Hohenberger; D. B. Sayre; R. Bionta; J.-L. Bourgade; J. A. Caggiano; Charles Cerjan; R. S. Craxton; D. Dearborn; M. Farrell; J. A. Frenje; E. M. Garcia; V. Yu. Glebov; Gerald M. Hale; Edward P. Hartouni; R. Hatarik; M. Hohensee; D. M. Holunga; M. L. Hoppe; R. Janezic; S. F. Khan; J. D. Kilkenny; Y. Kim; J. P. Knauer

This paper describes the development of a platform to study astrophysically relevant nuclear reactions using inertial-confinement fusion implosions on the OMEGA and National Ignition Facility laser facilities, with a particular focus on optimizing the implosions to study charged-particle-producing reactions. Primary requirements on the platform are high yield, for high statistics in the fusion product measurements, combined with low areal density, to allow the charged fusion products to escape. This is optimally achieved with direct-drive exploding pusher implosions using thin-glass-shell capsules. Mitigation strategies to eliminate a possible target sheath potential which would accelerate the emitted ions are discussed. The potential impact of kinetic effects on the implosions is also considered. The platform is initially employed to study the complementary T(t,2n)α, T(3He,np)α and 3He(3He,2p)α reactions. Proof-of-principle results from the first experiments demonstrating the ability to accurately measur...


Review of Scientific Instruments | 2010

Gamma bang time analysis at OMEGA.

A. McEvoy; H. W. Herrmann; C. J. Horsfield; C. S. Young; E. K. Miller; J. M. Mack; Y. Kim; W. Stoeffl; M. S. Rubery; S. C. Evans; T. J. Sedillo; Zaheer Ali

Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.


Journal of Physics: Conference Series | 2010

Measurement of DT fusion and neutron-induced gamma-rays using gas Cherenkov Detector

Y. Kim; H. W. Herrmann; S. C. Evans; T. J. Sedillo; J R Langenbrunner; C. S. Young; J. M. Mack; A. McEvoy; C. J. Horsfield; M. S. Rubery; Z Ali; W. Stoeffl

A secondary gamma experiment was carried out using a Gas Cherenkov Detector (GCD) at the OMEGA laser facility. The primary experimental objective was to simulate neutron-induced secondary gamma production (n-γ) from a NIF implosion capsule, hohlraum, and thermo-mechanical package. The high-band width of the GCD enabled us to detect time delayed and Doppler broadened n-γ signals from five different puck materials (Si, SiO2, Al, Al2O3, Cu) placed near target chamber center. These measurements were used for MCNP & ITS ACCEPT code validation purposes. By a simple change of the GCD CO2 gas pressure the system can effectively eliminate signals induced by n-γ reactions and thereby allow quality measurements of DT fusion γ-rays that are produced at NIF (National Ignition Facility).

Collaboration


Dive into the A. McEvoy's collaboration.

Top Co-Authors

Avatar

Y. Kim

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. W. Herrmann

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. J. Horsfield

Atomic Weapons Establishment

View shared research outputs
Top Co-Authors

Avatar

W. Stoeffl

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. M. Mack

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. S. Rubery

Atomic Weapons Establishment

View shared research outputs
Top Co-Authors

Avatar

C. S. Young

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. J. Sedillo

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. C. Evans

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Zylstra

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge