A. Muñoz Sudupe
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Muñoz Sudupe.
Journal of Physics A | 1999
H.G. Ballesteros; L. A. Fernandez; V. Martin-Mayor; A. Muñoz Sudupe; Giorgio Parisi; J. J. Ruiz-Lorenzo
Using finite-size scaling techniques we obtain accurate results for critical quantities of the Ising model and the site percolation, in three dimensions. We pay special attention to parametrizing the corrections-to-scaling, which is necessary to bring the systematic errors below the statistical ones.
Physical Review B | 1998
H.G. Ballesteros; L. A. Fernandez; V. Martin-Mayor; A. Muñoz Sudupe; Giorgio Parisi; J. J. Ruiz-Lorenzo
We study the phase diagram of the site-diluted Ising model in a wide dilution range, through Monte Carlo simulations and finite-size scaling techniques. Our results for the critical exponents and universal cumulants turn out to be dilution independent, but only after a proper infinite volume extrapolation, taking into account the leading corrections-to-scaling terms.
Physics Letters B | 1996
H.G. Ballesteros; L. A. Fernandez; V. Martin-Mayor; A. Muñoz Sudupe
Abstract We study the critical properties of three-dimensional O( N ) models, for N = 2, 3, 4. Parameterizing the leading corrections-to-scaling for the η exponent, we obtain a reliable infinite volume extrapolation, incompatible with previous Monte Carlo values, but in agreement with ϵ-expansions. We also measure the critical exponent related with the tensorial magnetization as well as the ν exponents and critical couplings.
Journal of Statistical Mechanics: Theory and Experiment | 2010
R. Alvarez Banos; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.
Physical Review Letters | 2008
F. Belletti; M. Cotallo; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; J. L. Velasco; D. Yllanes
We study numerically the nonequilibrium dynamics of the Ising spin glass, for a time spanning 11 orders of magnitude, thus approaching the experimentally relevant scale (i.e., seconds). We introduce novel analysis techniques to compute the coherence length in a model-independent way. We present strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible with noncoarsening behavior.
Physical Review B | 2000
H.G. Ballesteros; L. A. Fernandez; V. Martin-Mayor; A. Muñoz Sudupe; Giorgio Parisi; J. J. Ruiz-Lorenzo
We have studied numerically the effect of quenched site dilution on a first order phase transition in three dimensions. We have simulated the site diluted three states Potts model studying in detail the second order region of its phase diagram. We have found that the
Journal of Statistical Physics | 2009
F. Belletti; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; D. Yllanes
\nu
Physics Letters B | 1996
H.G. Ballesteros; L. A. Fernandez; V. Martin-Mayor; A. Muñoz Sudupe
exponent is compatible with the one of the three dimensional diluted Ising model whereas the
Physics Letters B | 1997
H.G. Ballesteros; L. A. Fernandez; V. Martin-Mayor; A. Muñoz Sudupe; Giorgio Parisi; J. J. Ruiz-Lorenzo
\eta
Journal of Physics A | 1997
H.G. Ballesteros; L. A. Fernandez; V. Martin-Mayor; A. Muñoz Sudupe; Giorgio Parisi; J.J. Ruiz-Lorenzo
exponent is definitely different.