Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Nobrega is active.

Publication


Featured researches published by A. Nobrega.


IEEE Transactions on Applied Superconductivity | 2009

Fabrication and Test of LARP Technological Quadrupole Models of TQC Series

R. Bossert; Giorgio Ambrosio; N. Andreev; E. Barzi; G. Chlachidze; S. Feher; V. S. Kashikhin; Vadim V. Kashikhin; M.J. Lamm; A. Nobrega; I. Novitski; D. Orris; M. Tartaglia; Alexander V. Zlobin; S. Caspi; D.R. Dietderich; P. Ferracin; A.R. Hafalia; GianLuca Sabbi; A. Ghosh; P. Wanderer

In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, several two-layer technological quadrupole models of TQC series with 90 mm aperture and collar-based mechanical structure have been developed at Fermilab in collaboration with LBNL. This paper summarizes the results of fabrication and test of TQC02a, the second TQC model based on RRP Nb3Sn strand, and TQC02b, built with both MJR and RRP strand. The test results presented include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9 K to 4.5 K.


IEEE Transactions on Applied Superconductivity | 2001

Status of the LHC inner triplet quadrupole program at Fermilab

N. Andreev; T. Arkan; P. Bauer; R. Bossert; J. Brandt; J. Carson; S. Caspi; D.R. Chichili; L. Chiesa; Christine Darve; J. DiMarco; S. Feher; A. Ghosh; H. Glass; Y. Huang; J. Kerby; M.J. Lamm; A.A. Markarov; A.D. McInturff; T. H. Nicol; A. Nobrega; I. Novitski; T. Ogitsu; D. Orris; J.P. Ozelis; T. Page; T. Peterson; R. Rabehl; W. Robotham; G. Sabbi

Fermilab, in collaboration with LBNL and BNL, is developing a quadrupole for installation in the interaction region inner triplets of the LHC. This magnet is required to have an operating gradient of 215 T/m across a 70 mm coil bore, and operates in superfluid helium at 1.9 K. A 2 m magnet program addressing mechanical, magnetic, quench protection, and thermal issues associated with the design was completed earlier this year, and production of the first full length, cryostatted prototype magnet is underway. This paper summarizes the conclusions of the 2 m program, and the design and status of the first full-length prototype magnet.


IEEE Transactions on Applied Superconductivity | 2001

Field quality in Fermilab-built models of quadrupole magnets for the LHC interaction region

N. Andreev; T. Arkan; P. Bauer; R. Bossert; J. Brandt; S. Caspi; D.R. Chichili; J. Carson; J. DiMarco; S. Feher; A. Ghosh; H. Glass; V.V. Kashikhin; J. Kerby; M.J. Lamm; A.D. McInturff; A. Makarov; A. Nobrega; I. Novitski; T. Ogitsu; D. Orris; J.P. Ozelis; T. Peterson; R. Rabehl; W. Robotham; G. Sabbi; R.M. Scanlan; P. Schlabach; C. Sylvester; J. Strait

Superconducting quadrupole magnets for the interaction regions of the Large Hadron Collider are being developed by the US-LHC Accelerator Project. These 70 mm bore quadrupole magnets are intended to operate in superfluid helium at 1.9 K with a nominal field gradient of 215 T/m. A series of 2 m model magnets has been built and cold tested at Fermilab to optimize their design and construction and to study the performance of the magnets. Field measurements of the 8 model magnets and comparisons with the required field quality are reported in this paper.


IEEE Transactions on Applied Superconductivity | 2016

The 11 T Dipole for HL-LHC: Status and Plan

F. Savary; E. Barzi; B. Bordini; L. Bottura; G. Chlachidze; D. Ramos; S. Izquierdo Bermudez; M. Karppinen; Friedrich Lackner; Christian Loffler; R. Moron-Ballester; A. Nobrega; J. C. Perez; H. Prin; D. Smekens; G. de Rijk; Stefano Redaelli; L. Rossi; G. Willering; A.V. Zlobin; M. Giovannozzi

The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHC in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. The overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.


IEEE Transactions on Applied Superconductivity | 2000

Correction of high gradient quadrupole harmonics with magnetic shims

G. Sabbi; J. DiMarco; A. Nobrega; T. Ogitsu; P. Schlabach; J.C. Tompkins; S. Yadav

Superconducting quadrupole magnets with 70 mm aperture and nominal field gradient of 215 T/m are being developed by the US-LHC Accelerator Project for the Interaction Regions of the Large Hadron Collider. Due to large beam size and orbit displacement in the final focusing triplet, these magnets are subject to stringent field quality requirements. For this reason, a correction scheme based on design calculations, fabrication issues and tests results involving magnetic shims.


IEEE Transactions on Applied Superconductivity | 2000

Field quality in Fermilab-built models of high gradient quadrupole magnets for the LHC interaction regions

N. Andreev; T. Arkan; P. Bauer; R. Bossert; J. Brandt; D.R. Chichili; J. Carson; J. DiMarco; S. Feher; H. Glass; J. Kerby; M.J. Lamm; A. Makarov; A. Nobrega; I. Novitski; T. Ogitsu; D. Orris; J.P. Ozelis; T. Peterson; R. Rabehl; W. Robotham; G. Sabbi; P. Schlabach; C. Sylvester; J. Strait; M. Tartaglia; J.C. Tompkins; S. Yadav; A.V. Zlobin; S. Caspi

Superconducting quadrupole magnets for the interaction regions of the Large Hadron Collider are being developed by the US-LHC Accelerator Project. These 70 mm bore quadrupole magnets are intended to operate in superfluid helium at 1.9 K with a nominal field gradient of 215 T/m. A series of 2 m model magnets are being built and tested at Fermilab to optimize design and construction parameters. Measurements of the field quality of the model magnets tested to date and comparisons with the required field quality are reported in this paper.


IEEE Transactions on Applied Superconductivity | 2012

Design of 11 T Twin-Aperture Dipole Demonstrator Magnet for LHC Upgrades

M. Karppinen; N. Andreev; Giorgio Apollinari; Bernhard Auchmann; E. Barzi; R. Bossert; V.V. Kashikhin; A. Nobrega; I. Novitski; L. Rossi; D. Smekens; A.V. Zlobin

The LHC collimation upgrade foresees two additional collimators installed in the dispersion suppressor regions of points 2, 3 and 7. To obtain the necessary longitudinal space for the collimators, a solution based on an 11 T dipole as replacement of the 8.33 T LHC main dipoles is being considered. CERN and FNAL have started a joint development program to demonstrate the feasibility of technology for this purpose. The program started with the development and test of a 2-m-long single-aperture demonstrator magnet. The goal of the second phase is the design and construction of a series of 2-m-long twin-aperture demonstrator magnets with a nominal field of 11 T at 11.85 kA current. This paper describes the electromagnetic design and gives a forecast of the field quality including saturation of the iron yoke and persistent-current effects in the coils. The mechanical design concepts based on separate collared coils, assembled in a vertically split iron yoke are also discussed.


IEEE Transactions on Applied Superconductivity | 2005

Test results of LHC interaction regions quadrupoles produced by Fermilab

S. Feher; R. Bossert; J. Carson; D.R. Chichili; J. Kerby; M.J. Lamm; A. Nobrega; T. H. Nicol; T. Ogitsu; D. Orris; T. Page; T. Peterson; R. Rabehl; W. Robotham; R.M. Scanlan; P. Schlabach; C. Sylvester; J. Strait; M. Tartaglia; J.C. Tompkins; G. Velev; S. Yadav; A.V. Zlobin

The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.


IEEE Transactions on Applied Superconductivity | 2015

Design, Assembly, and Test of the CERN 2-m Long 11 T Dipole in Single Coil Configuration

F. Savary; Giorgio Apollinari; Bernhard Auchmann; E. Barzi; G. Chlachidze; Michael Guinchard; Philippe Grosclaude; S. Izquierdo Bermudez; M. Karppinen; Christian Loffler; G. Kirby; C. Kokkinos; Friedrich Lackner; T. J. Lyon; A. Nobrega; I. Novitski; L. Oberli; J. C. Perez; Francois-Olivier Pincot; L. Rossi; J. Rysti; G. Willering; A.V. Zlobin

The upgrade of the LHC collimation system includes additional collimators in the LHC lattice. The longitudinal space for the collimators can be obtained by replacing some LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and the existing powering circuits, cryogenics, and beam vacuum. A joint development programme aiming at building a 5.5 m long two-in-one aperture Nb3Sn dipole prototype suitable for installation in the LHC is being conducted by FNAL and CERN. As part of the first phase of the programme, 1 m and 2 m long single aperture models are being built and tested. Later on, the collared coils from these models will be assembled and tested in a two-in-one aperture configuration in both laboratories. A 2 m long practice model made of a single coil wound with Nb3Sn cable, MBHSM101, was developed and constructed at CERN. It has been completed, and tested at both 4.3 K and 1.9 K. This practice model features collared coils based on removable pole concept, S2-glass cable insulation braided over a mica layer, and coil end spacers made of sintered stainless steel with springy legs. The paper describes the main features of this practice model, the main manufacturing steps and the results of the cold tests.


IEEE Transactions on Applied Superconductivity | 2004

Test results from the LQXB quadrupole production program at Fermilab for the LHC interaction regions

R. Bossert; J. Carson; D.R. Chichili; S. Feher; J. Kerby; M.J. Lamm; A. Nobrega; T. H. Nicol; T. Ogitsu; D. Orris; T. Page; T. Peterson; R. Rabehl; W. Robotham; R.M. Scanlan; P. Schlabach; C. Sylvester; J. Strait; M. Tartaglia; J.C. Tompkins; G. Velev; S. Yadav; A.V. Zlobin

As part of the US-LHC Accelerator Project, Fermilab is producing fully cryostated assemblies that will be installed as the Q1, Q2 and Q3 optical elements for the LHC Inner Triplets. The main quadrupole magnets in the Q1 (LQXA) and Q3 (LQXC) assemblies are MQXA elements designed and fabricated by KEK and Toshiba, while those in the Q2 (LQXB) assemblies are MQXB quadrupoles designed and fabricated by Fermilab. The cryostat assemblies for all magnets are designed by Fermilab, and final assembly of the optical elements occurs at Fermilab. This paper describes the production test results for the second LQXB cryostat assembly.

Collaboration


Dive into the A. Nobrega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge