Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. DiMarco is active.

Publication


Featured researches published by J. DiMarco.


IEEE Transactions on Applied Superconductivity | 2000

Field alignment of quadrupole magnets for the LHC interaction regions

J. DiMarco; H. Glass; M.J. Lamm; P. Schlabach; C. Sylvester; J.C. Tompkins; I. Krzywinski

High-gradient superconducting quadrupole magnets are being developed by the US LHC Accelerator Project for the Interaction Regions of the Large Hadron Collider. Determination of the magnetic axis for alignment of these magnets will be performed using a single stretched wire system. These measurements will be done both at room and cryogenic temperatures with very long wire lengths, up to 20 m. This paper reports on the stretched wire alignment methodology to be employed: and the results of recent room-temperature measurements on a 2 m model magnet with long wire lengths.


Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167) | 1997

A new facility to test superconducting accelerator magnets

M.J. Lamm; J. DiMarco; E. Desavouret; S. Feher; J.D. Garvey; C. Hess; P.J. Limon; Jerzy Nogiec; D. Orris; J. Pachnik; T. Peterson; S. Sharonov; J. Strait; C. Sylvester; J.W. Sim; M. Tartaglia; J.C. Tompkins; A.V. Zlobin

Future high energy accelerators such as the Large Hadron Collider require accelerator magnets with the highest possible fields. For NbTi conductor magnets, this means operating at superfluid helium temperatures in the range of 1.8-1.9 K. As part of Fermilabs superconducting magnet R&D program, we have built a facility to test magnets in a vertical dewar of superfluid liquid helium. The dewar is designed for magnets up to 4 m length and 620 mm diameter, with a temperature range of 1.8 K to 4.4 K and 1 atmosphere helium. The power system consists of 10 kA and 8.8 kA power supplies operating in parallel, with a bus work and an extraction circuit that can accommodate up a 18 kA excitation current. A description of the facility as well as operational experience from the first magnet tests are presented.


IEEE Transactions on Applied Superconductivity | 2001

Status of the LHC inner triplet quadrupole program at Fermilab

N. Andreev; T. Arkan; P. Bauer; R. Bossert; J. Brandt; J. Carson; S. Caspi; D.R. Chichili; L. Chiesa; Christine Darve; J. DiMarco; S. Feher; A. Ghosh; H. Glass; Y. Huang; J. Kerby; M.J. Lamm; A.A. Markarov; A.D. McInturff; T. H. Nicol; A. Nobrega; I. Novitski; T. Ogitsu; D. Orris; J.P. Ozelis; T. Page; T. Peterson; R. Rabehl; W. Robotham; G. Sabbi

Fermilab, in collaboration with LBNL and BNL, is developing a quadrupole for installation in the interaction region inner triplets of the LHC. This magnet is required to have an operating gradient of 215 T/m across a 70 mm coil bore, and operates in superfluid helium at 1.9 K. A 2 m magnet program addressing mechanical, magnetic, quench protection, and thermal issues associated with the design was completed earlier this year, and production of the first full length, cryostatted prototype magnet is underway. This paper summarizes the conclusions of the 2 m program, and the design and status of the first full-length prototype magnet.


IEEE Transactions on Applied Superconductivity | 2013

Application of PCB and FDM Technologies to Magnetic Measurement Probe System Development

J. DiMarco; G. Chlachidze; A. Makulski; D. Orris; M. Tartaglia; J.C. Tompkins; G. Velev; X. Wang

Rotating coil probes are essential for measuring harmonic multipole fields of accelerator magnets. A fundamental requirement of these probes is their accuracy, which typically implies that the probes need to be very stiff and straight, have highly accurate knowledge of the placement of windings, and an ability to buck the fundamental fields well in order to suppress the effects of vibrations. Ideally, for an R&D test environment, probe fabrication should also be easy and low-cost, so that probe parameters (type, length, number of turns, radius, etc.) can be customized to the magnet requiring test. Such facility allows measurement optimization for magnets of various multipolarity, aperture size, cable twist pitch, etc. The accuracy and construction flexibility aspects of probe development, however, are often at odds with each other. This paper reports on application of printed-circuit board and fused-deposition modeling technologies, and what these offer to the fabrication of magnetic measurement probe systems.


IEEE Transactions on Applied Superconductivity | 2006

A Configurable Component-Based Software System for Magnetic Field Measurements

Jerzy Nogiec; J. DiMarco; S. Kotelnikov; K. Trombly-Freytag; D. Walbridge; M. Tartaglia

A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a pre-selected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware


IEEE Transactions on Applied Superconductivity | 2003

Passive correction of the persistent current effect in Nb/sub 3/Sn accelerator magnets

V.V. Kashikhin; E. Barzi; D.R. Chichili; J. DiMarco; M.J. Lamm; P. Schlabach; A.V. Zlobin

Superconducting accelerator magnets must provide a uniform field during operation. However, the field quality significantly deteriorates due to persistent currents induced in superconducting filaments. This effect is especially large for the Nb/sub 3/Sn conductor being implemented in the next generation of accelerator magnets. A simple and inexpensive method of passive correction of the persistent current effect was developed and experimentally verified. This paper describes numerical simulations of the passive correctors and reports the test results.


IEEE Transactions on Applied Superconductivity | 2008

Field Quality Measurements and Analysis of the LARP Technology Quadrupole Models

G. Velev; R. Bossert; S. Caspi; G. Chlachidze; J. DiMarco; P. Ferracin; V.V. Kashikhin; M.J. Lamm; G. Sabbi; P. Schlabach; M. Tartaglia; J.C. Tompkins; A.V. Zlobin

One of the US-LHC accelerator research program goals is to develop and prove the design and technology of quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.


IEEE Transactions on Applied Superconductivity | 2002

Development and test of single-bore cos-/spl thetav/ Nb/sub 3/Sn dipole models with cold iron yoke

N. Andreev; G. Ambrosio; E. Barzi; R. Carcagno; D.R. Chichili; J. DiMarco; S. Feher; L. Imbasciati; V.V. Kashikhin; M.J. Lamm; P.J. Limon; D. Orris; P. Schlabach; C. Sylvester; M. Tartaglia; I. Terechkine; J.C. Tompkins; S. Yadav; R. Yamada; Alexander V. Zlobin

Two short Nb/sub 3/Sn dipole models based on a single-bore cos-theta coil with a cold iron yoke were fabricated and tested at Fermilab. This paper summarizes the details of magnet design and fabrication procedure, and reports the test results including quench performance and quench heater studies, and the magnetic measurements.


IEEE Transactions on Applied Superconductivity | 2001

Field quality in Fermilab-built models of quadrupole magnets for the LHC interaction region

N. Andreev; T. Arkan; P. Bauer; R. Bossert; J. Brandt; S. Caspi; D.R. Chichili; J. Carson; J. DiMarco; S. Feher; A. Ghosh; H. Glass; V.V. Kashikhin; J. Kerby; M.J. Lamm; A.D. McInturff; A. Makarov; A. Nobrega; I. Novitski; T. Ogitsu; D. Orris; J.P. Ozelis; T. Peterson; R. Rabehl; W. Robotham; G. Sabbi; R.M. Scanlan; P. Schlabach; C. Sylvester; J. Strait

Superconducting quadrupole magnets for the interaction regions of the Large Hadron Collider are being developed by the US-LHC Accelerator Project. These 70 mm bore quadrupole magnets are intended to operate in superfluid helium at 1.9 K with a nominal field gradient of 215 T/m. A series of 2 m model magnets has been built and cold tested at Fermilab to optimize their design and construction and to study the performance of the magnets. Field measurements of the 8 model magnets and comparisons with the required field quality are reported in this paper.


IEEE Transactions on Applied Superconductivity | 2013

Field Quality Measurements in a Single-Aperture 11 T

N. Andreev; Giorgio Apollinari; Bernhard Auchmann; E. Barzi; R. Bossert; G. Chlachidze; J. DiMarco; M. Karppinen; F. Nobrega; I. Novitski; L. Rossi; D. Smekens; D. Turrioni; G. Velev; A.V. Zlobin

The upgrade of the Large Hadron Collider (LHC) collimation system foresees additional collimators in the LHC dispersion suppressor areas. The longitudinal space for the collimators could be provided by replacing some NbTi LHC main dipoles with shorter 11 T Nb3Sn dipoles. To demonstrate this possibility, Fermilab and CERN have started a joint program to develop a Nb3Sn dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m-long, 60-mm-bore, single-aperture demonstrator dipole with the nominal field of 11 T at the LHC operational current of 11.85 kA. This paper presents the results of magnetic measurements of the single-aperture Nb3Sn demonstrator dipole including geometrical harmonics, coil magnetization, and iron saturation effects. The experimental data are compared with the magnetic calculations.

Collaboration


Dive into the J. DiMarco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge