Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.P. Shah is active.

Publication


Featured researches published by A.P. Shah.


International Journal of Radiation Oncology Biology Physics | 2008

Patient Dose From Megavoltage Computed Tomography Imaging

A.P. Shah; Katja M. Langen; Kenneth J. Ruchala; Andrea Cox; Patrick A. Kupelian; Sanford L. Meeks

PURPOSE Megavoltage computed tomography (MVCT) can be used daily for imaging with a helical tomotherapy unit for patient alignment before treatment delivery. The purpose of this investigation was to show that the MVCT dose can be computed in phantoms, and further, that the dose can be reported for actual patients from MVCT on a helical tomotherapy unit. METHODS AND MATERIALS An MVCT beam model was commissioned and verified through a series of absorbed dose measurements in phantoms. This model was then used to retrospectively calculate the imaging doses to the patients. The MVCT dose was computed for five clinical cases: prostate, breast, head/neck, lung, and craniospinal axis. RESULTS Validation measurements in phantoms verified that the computed dose can be reported to within 5% of the measured dose delivered at the helical tomotherapy unit. The imaging dose scaled inversely with changes to the CT pitch. Relative to a normal pitch of 2.0, the organ dose can be scaled by 0.67 and 2.0 for scans done with a pitch of 3.0 and 1.0, respectively. Typical doses were in the range of 1.0-2.0 cGy, if imaged with a normal pitch. The maximal organ dose calculated was 3.6 cGy in the neck region of the craniospinal patient, if imaged with a pitch of 1.0. CONCLUSION Calculation of the MVCT dose has shown that the typical imaging dose is approximately 1.5 cGy per image. The uniform MVCT dose delivered using helical tomotherapy is greatest when the anatomic thickness is the smallest and the pitch is set to the lowest value.


International Journal of Radiation Oncology Biology Physics | 2012

An Endorectal Balloon Reduces Intrafraction Prostate Motion During Radiotherapy

Robert Jan Smeenk; Robert J.W. Louwe; Katja M. Langen; A.P. Shah; Patrick A. Kupelian; Emile N.J.Th. van Lin; Johannes H.A.M. Kaanders

PURPOSE To investigate the effect of endorectal balloons (ERBs) on intrafraction and interfraction prostate motion during radiotherapy. METHODS AND MATERIALS Thirty patients were treated with intensity-modulated radiotherapy, to a total dose of 80 Gy in 40 fractions. In 15 patients, a daily-inserted air-filled ERB was applied. Prostate motion was tracked, in real-time, using an electromagnetic tracking system. Interfraction displacements, measured before each treatment, were quantified by calculating the systematic and random deviations of the center of mass of the implanted transponders. Intrafraction motion was analyzed in timeframes of 150 s, and displacements >1 mm, >3 mm, >5 mm, and >7 mm were determined in the anteroposterior, left-right, and superoinferior direction, and for the three-dimensional (3D) vector. Manual table corrections, made during treatment sessions, were retrospectively undone. RESULTS A total of 576 and 567 tracks have been analyzed in the no-ERB group and ERB group, respectively. Interfraction variation was not significantly different between both groups. After 600 s, 95% and 98% of the treatments were completed in the respective groups. Significantly fewer table corrections were performed during treatment fractions with ERB: 88 vs. 207 (p = 0.02). Intrafraction motion was significantly reduced with ERB. During the first 150 s, only negligible deviations were observed, but after 150 s, intrafraction deviations increased with time. This resulted in cumulative percentages of 3D-vector deviations >1 mm, >3 mm, >5 mm, and >7 mm that were 57.7%, 7.0%, 0.7%, and 0.3% in the ERB-group vs. 70.2%, 18.1%, 4.6%, and 1.4% in the no-ERB group after 600 s. The largest reductions in the ERB group were observed in the AP direction. These data suggest that a 5 mm CTV-to-PTV margin is sufficient to correct for intrafraction prostate movements when using an ERB. CONCLUSIONS ERB significantly reduces intrafraction prostate motion, but not interfraction variation, and may in particular be beneficial for treatment sessions longer than 150 s.


Radiotherapy and Oncology | 2011

An evaluation of intrafraction motion of the prostate in the prone and supine positions using electromagnetic tracking

A.P. Shah; Patrick A. Kupelian; Twyla R. Willoughby; Katja M. Langen; Sanford L. Meeks

PURPOSE To evaluate differences in target motion during prostate irradiation in the prone versus supine position using electromagnetic tracking to measure prostate mobility. MATERIALS/METHODS Twenty patients received prostate radiotherapy in the supine position utilizing the Calypso Localization System® for prostate positioning and monitoring. For each patient, 10 treatment fractions were followed by a session in which the patient was repositioned prone, and prostate mobility was tracked. The fraction of time that the prostate was displaced by >3, 5, 7, and 10mm was calculated for each patient, for both positions (400 tracking sessions). RESULTS Clear patterns of respiratory motion were seen in the prone tracks due to the influence of increased abdominal motion. Averaged over all patients, the prostate was displaced >3 and 5mm for 37.8% and 10.1% of the total tracking time in the prone position, respectively. In the supine position, the prostate was displaced >3 and 5mm for 12.6% and 2.9%, respectively. With both patient setups, inferior and posterior drifts of the prostate position were observed. Averaged over all prone tracking sessions, the prostate was displaced >3mm in the posterior and inferior directions for 11.7% and 9.5% of the total time, respectively. CONCLUSIONS With real-time tracking of the prostate, it is possible to study the effects of different setup positions on the prostate mobility. The percentage of time the prostate moved >3 and 5mm was increased by a factor of three in the prone versus supine position. For larger displacements (>7 mm) no difference in prostate mobility was observed between prone and supine positions. To reduce rectal toxicity, radiotherapy in the prone position may be a suitable alternative provided respiratory motion is accounted for during treatment. Acute and late toxicity results remain to be evaluated for both patient positions.


Physics in Medicine and Biology | 2006

An assessment of bone marrow and bone endosteum dosimetry methods for photon sources

Choonik Lee; Choonsik Lee; A.P. Shah; Wesley E. Bolch

The rather complex and microscopic histological structure of the skeletal system generally limits ones ability to accurately model this tissue during dosimetric evaluations. Consequently, various assumptions must be made to evaluate the absorbed dose from external and internal photons to the radiosensitive tissues of the red (or haematopoietically active) bone marrow and the osteogenic tissues of the skeletal endosteum. These various methods for photon skeletal dosimetry have not been inter-compared, partly due to the lack of a realistic reference model that can provide a high-resolution three-dimensional geometry for secondary electron particle transport. In the present study, the paired-image radiation transport (PIRT) model developed by Shah et al (2005 J. Nucl. Med. 45 344) was utilized to evaluate the absorbed dose per incident photon fluence to these skeletal regions from idealized parallel beams of monoenergetic photons. The PIRT model results were then used as a local reference against which absorbed doses via other methods were compared. For red bone marrow dosimetry, four approximate techniques were considered: (1) the dose response function method (DRF method) presented in ORNL/TM-8381, (2) the mass-energy absorption coefficient ratio method (two-parameter MEAC method), (3) the MEAC method with the additional use of energy-dependent dose enhancement factors from King and Spiers (1985 Br. J. Radiol. 58 345) (three-parameter MEAC method), and (4) the three-parameter MEAC method applied at the voxel level through the use image-specific CT numbers (CTN method). For the bone endosteum (i.e., bone surfaces), two approximate techniques were compared: (1) the DRF method for bone surfaces and (2) the homogeneous bone approximation (HBA) method. In each case, the local reference standard was assumed to be that of the PIRT model. Four different ex vivo bone specimens with distinctively different internal structures were used in the study: the cranium, the lumbar vertebra, the os coxae and the left middle rib, each excised from a 66 year male cadaver (body mass index, 22.7 kg m(-2)). High-resolution CT images of these skeletal sites were used to construct computational voxel models for Monte Carlo radiation transport. Study results indicated that skeletal sites with thick cortical regions and thick trabeculae such as in the cranium provide considerable beam attenuation at low photon energies, which is not properly accounted for in methods based on a homogeneous skeletal tissue structure (DRF, MEAC, HBA). For bone marrow dose assessment, the CTN method showed the best agreement with PIRT model results over a broad range of photon energies, while the HBA method showed better agreement with the PIRT model in assessing bone endosteum dose at energies above 100 keV. Bone surface doses were better approximately by the DRF method at energies below 50 keV. Considerable secondary electron escape at photon energies over 1-3 MeV were accounted for in RBM dose assessment only in the PIRT model, as the other methods presume either an infinite expanse of spongiosa (DRF) or the existence of charge-particle equilibrium (MEAC, CTN).


International Journal of Radiation Oncology Biology Physics | 2013

Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

A.P. Shah; Patrick A. Kupelian; Benjamin J. Waghorn; Twyla R. Willoughby; Justin Rineer; Rafael R. Mañon; Mark A. Vollenweider; Sanford L. Meeks

PURPOSE To describe the first use of the commercially available Calypso 4D Localization System in the lung. METHODS AND MATERIALS Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R(2)) were tabulated for all 42 tracks. RESULTS For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponders smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. CONCLUSIONS Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still necessary to create a clinical daily-use system to assist with actual lung radiation therapy.


Journal of Applied Clinical Medical Physics | 2011

Expanding the use of real-time electromagnetic tracking in radiation oncology

A.P. Shah; Patrick A. Kupelian; Twyla R. Willoughby; Sanford L. Meeks

In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d


Practical radiation oncology | 2013

Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging.

A.P. Shah; T. Dvorak; Michael S. Curry; Daniel J. Buchholz; Sanford L. Meeks

PURPOSE To evaluate the impact of 3-dimensional (3D) surface imaging on daily patient setup for breast radiotherapy. MATERIALS AND METHODS Fifty patients undergoing treatment for whole breast radiotherapy were setup daily using an AlignRT system (VisionRT, London, UK) for 3D surface-based alignment. Daily alignments were performed against a reference surface topogram and shifts from skin marks were recorded daily. This investigation evaluated the following: (1) the performance of the surface-based imaging system for daily breast alignment; (2) the absolute displacements between setup with skin marks and setup with the surface-based imaging system; and (3) the dosimetric effect of daily alignments with skin marks versus surface-based alignments. RESULTS Displacements from 1258 treatment fractions were analyzed. Sixty percent of those fractions (749) were reviewed against MV portal imaging in order to assess the performance of the AlignRT system. Daily setup errors were given as absolute displacements, comparing setup marks against shifts determined using the surface-based imaging system. Averaged over all patients, the mean displacements were 4.1 ± 2.6 mm, 2.7 ± 1.4 mm, and 2.6 ± 1.2 mm in the anteroposterior (AP), superoinferior (S/I), and left-right (L/R) directions, respectively. Furthermore, the standard deviation of the random error (σ) was 3.2 mm, 2.2 mm, and 2.2 mm in the A/P, S/I, and L/R directions, respectively. CONCLUSIONS Daily alignment with 3D surface imaging was found to be valuable for reducing setup errors when comparing with patient alignment from skin marks. The result of the surface-based alignments specifically showed that alignment with skin marks was noticeably poor in the anteroposterior directions. The overall dosimetric effect of the interfractional variations was small, but these variations showed a potential for increased dose deposition to both the heart and lung tissues. Although these interfractional variations would not negatively affect the quality of patient care for whole breast radiotherapy, it may require an increase in PTV margin, especially in cases of partial breast irradiation.


Physics in Medicine and Biology | 2010

A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

Ben J. Waghorn; A.P. Shah; Wilfred Ngwa; Sanford L. Meeks; Joseph A. Moore; J Siebers; Katja M. Langen

Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the films dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 +/- 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 +/- 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plans sensitivity to anticipated organ motion. With knowledge of the organs motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.


medical image computing and computer assisted intervention | 2008

Real-Time Simulation of 4D Lung Tumor Radiotherapy Using a Breathing Model

Anand P. Santhanam; Twyla R. Willoughby; A.P. Shah; Sanford L. Meeks; Jannick P. Rolland; Patrick A. Kupelian

In this paper, we present a real-time simulation and visualization framework that models a deformable surface lung model with tumor, simulates the tumor motion and predicts the amount of radiation doses that would be deposited in the moving lung tumor during the actual delivery of radiation. The model takes as input a subject-specific 4D Computed Tomography (4D CT) of lungs and computes a deformable lung surface model by estimating the deformation properties of the surface model using an inverse dynamics approach. Once computed, the deformable model is used to simulate and visualize lung tumor motion that would occur during radiation therapy accounting for variations in the breathing pattern. A radiation treatment plan for the lung tumor is developed using one of the 4D CT phases. During the simulation of radiation delivery, the dose on the lung tumor is computed for each beam independently.


Medical Physics | 2006

CT volumetry of the skeletal tissues.

James M. Brindle; A. Alexandre Trindade; Jose C. Pichardo; Scott L. Myers; A.P. Shah; Wesley E. Bolch

Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was explored and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipes inner region resulted in mean percent errors within ∼5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18cm3 for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as ∼20% for the outer region volume estimates and only as high as ∼6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.

Collaboration


Dive into the A.P. Shah's collaboration.

Top Co-Authors

Avatar

Sanford L. Meeks

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Twyla R. Willoughby

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Katja M. Langen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

O Zeidan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rafael R. Mañon

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth J. Ruchala

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Robert J. Staton

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Buchholz

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge