Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Pérez Galván is active.

Publication


Featured researches published by A. Pérez Galván.


Physical Review Letters | 2010

Determination of the axial-vector weak coupling constant with ultracold neutrons.

J. Liu; M. P. Mendenhall; Adam Holley; H. O. Back; T. J. Bowles; L. J. Broussard; R. Carr; S. Clayton; S. Currie; B. W. Filippone; Alejandro García; P. Geltenbort; K. P. Hickerson; J. Hoagland; Gary E. Hogan; B. Hona; T. M. Ito; C.-Y. Liu; M. Makela; R. R. Mammei; J. W. Martin; D. Melconian; C. L. Morris; R. W. Pattie; A. Pérez Galván; M. L. Pitt; B. Plaster; J. C. Ramsey; R. Rios; R. Russell

A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.


Physical Review C | 2012

Measurement of the neutron β -asymmetry parameter A 0 with ultracold neutrons

B. Plaster; R. Carr; B. W. Filippone; K. P. Hickerson; T. M. Ito; Jianbei Liu; J. W. Martin; M. P. Mendenhall; A. Pérez Galván; R. Russell; R. Schmid; B. Tipton; Junhua Yuan

We present a detailed report of a measurement of the neutron β-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented.


Physical Review C | 2013

Precision measurement of the neutron β-decay asymmetry

M. P. Mendenhall; R. Carr; B. W. Filippone; K. P. Hickerson; J. L. Liu; A. Pérez Galván; R. Picker

A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30).


Physical Review C | 2018

New result for the neutron

M. A. P. Brown; E. B. Dees; E. R. Adamek; B. Allgeier; M. Blatnik; T. J. Bowles; L. J. Broussard; R. Carr; Steven Clayton; C. Cude-Woods; S. Currie; X. Ding; B. W. Filippone; A. García; P. Geltenbort; S. Hasan; K. P. Hickerson; J. Hoagland; R. Hong; G. E. Hogan; A. T. Holley; Takeyasu M. Ito; A. Knecht; Ching Liu; J. Liu; M. Makela; J. W. Martin; D. Melconian; M. P. Mendenhall; S. D. Moore

Background: The neutron β-decay asymmetry parameter A_0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A_0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ≡gA/gV, which under assumption of the conserved vector current hypothesis (gV=1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A_0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A_0. Results: The UCNA experiment reports a new 0.67% precision result for A_0 of A_0=−0.12054(44)_(stat)(68)_(syst), which yields λ=gA/gV=−1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)syst and λ=gA/gV=−1.2772(20). Conclusions: This new result for A0 and gA/gV from the UCNA experiment has provided confirmation of the shift in values for gA/gV that has emerged in the published results from more recent experiments, which are in striking disagreement with the results from older experiments. Individual systematic corrections to the asymmetries in older experiments (published prior to 2002) were >10%, whereas those in the more recent ones (published after 2002) have been of the scale of <2%. The impact of these older results on the global average will be minimized should future measurements of A0 reach the 0.1% level of precision with central values near the most recent results.


Physical Review C | 2012

\beta

B. Plaster; J. Hoagland; R. W. Pattie; S. Clayton; P. Geltenbort; R. Mortensen; C. Wrede; A. García; H. Yan; T. J. Bowles; A. Saunders; B. W. Filippone; R. Rios; Dan Melconian; R. R. Mammei; R. Carr; Jianbei Liu; B. Hona; B. VornDick; M. Makela; A. R. Young; K. P. Hickerson; H. O. Back; M. P. Mendenhall; R. B. Vogelaar; T. M. Ito; S. J. Seestrom; J. C. Ramsey; Gary E. Hogan; W. E. Sondheim

We present a detailed report of a measurement of the neutron β-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented.


Physical Review C | 2017

-asymmetry parameter

K. P. Hickerson; X. Sun; R. Carr; B. W. Filippone; J. Liu; M. P. Mendenhall; A. Pérez Galván; R. Picker

Precision measurements of free-neutron β decay have been used to precisely constrain our understanding of the weak interaction. However, the neutron Fierz interference term b_n, which is particularly sensitive to beyond-standard-model tensor currents at the TeV scale, has thus far eluded measurement. Here we report the first direct constraints on this term, finding b_n=0.067±0.005_(stat)^(+0.090)_(−0.061)_(sys), consistent with the standard model. The uncertainty is dominated by absolute energy reconstruction and the linearity of the β spectrometer energy response.


arXiv: Nuclear Experiment | 2018

A_0

X. Sun; E. R. Adamek; B. Allgeier; M. Blatnik; T. J. Bowles; L. J. Broussard; M. A. P. Brown; R. Carr; Steven Clayton; C. Cude-Woods; S. Currie; E. B. Dees; X. Ding; B. W. Filippone; A. García; P. Geltenbort; S. Hasan; K. P. Hickerson; J. Hoagland; R. Hong; G. E. Hogan; A. T. Holley; Takeyasu M. Ito; A. Knecht; Ching Liu; J. Liu; M. Makela; R. Mammei; J. W. Martin; D. Melconian

It has been proposed recently that a previously unobserved neutron decay branch to a dark matter particle (χ) could account for the discrepancy in the neutron lifetime observed in experiments that use two different measurement techniques. One of the possible final states discussed includes a single χ along with an e^+e^− pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∼4π acceptance using a pair of detectors that observe a volume of stored Ultracold Neutrons (UCNs). The summed kinetic energy (E_(e^+e^−)) from such events is used to set limits, as a function of the χ mass, on the branching fraction for this decay channel. For χ masses consistent with resolving the neutron lifetime discrepancy, we exclude this as the dominant dark matter decay channel at ≫ 5σlevel for 100 keV 90% confidence level.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017

from UCNA

S. Slutsky; C.M. Swank; A. Biswas; R. Carr; J. Escribano; B. W. Filippone; W. C. Griffith; M. P. Mendenhall; N. Nouri; C. Osthelder; A. Pérez Galván; R. Picker; B. Plaster

A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.


Physical Review C | 2013

Measurement of the neutron

M. P. Mendenhall; R. W. Pattie; Y. Bagdasarova; D. B. Berguno; L. J. Broussard; R. Carr; S. Currie; X. Ding; B. W. Filippone; A. García; P. Geltenbort; K. P. Hickerson; J. Hoagland; Adam Holley; R. Hong; T. M. Ito; A. Knecht; C.-Y. Liu; J. Liu; M. Makela; R. R. Mammei; J. W. Martin; Dan Melconian; S. D. Moore; C. L. Morris; A. Pérez Galván; R. Picker; M. L. Pitt; B. Plaster; J. C. Ramsey

A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30).


Physical Review C | 2012

\beta

B. Plaster; R. Rios; H. O. Back; T. J. Bowles; L. J. Broussard; R. Carr; S. Clayton; S. Currie; B. W. Filippone; A. García; P. Geltenbort; K. P. Hickerson; J. Hoagland; Gary E. Hogan; B. Hona; Adam Holley; T. M. Ito; C.-Y. Liu; Jianbei Liu; M. Makela; R. R. Mammei; J. W. Martin; Dan Melconian; M. P. Mendenhall; C. L. Morris; R. Mortensen; R. W. Pattie; A. Pérez Galván; M. L. Pitt; J. C. Ramsey

We present a detailed report of a measurement of the neutron β-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented.

Collaboration


Dive into the A. Pérez Galván's collaboration.

Top Co-Authors

Avatar

K. P. Hickerson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. W. Filippone

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. P. Mendenhall

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Carr

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Hoagland

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M. Makela

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. Plaster

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Currie

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. M. Ito

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge