M. P. Mendenhall
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. P. Mendenhall.
Physical Review Letters | 2010
J. Liu; M. P. Mendenhall; Adam Holley; H. O. Back; T. J. Bowles; L. J. Broussard; R. Carr; S. Clayton; S. Currie; B. W. Filippone; Alejandro García; P. Geltenbort; K. P. Hickerson; J. Hoagland; Gary E. Hogan; B. Hona; T. M. Ito; C.-Y. Liu; M. Makela; R. R. Mammei; J. W. Martin; D. Melconian; C. L. Morris; R. W. Pattie; A. Pérez Galván; M. L. Pitt; B. Plaster; J. C. Ramsey; R. Rios; R. Russell
A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.
Physical Review C | 2012
B. Plaster; R. Carr; B. W. Filippone; K. P. Hickerson; T. M. Ito; Jianbei Liu; J. W. Martin; M. P. Mendenhall; A. Pérez Galván; R. Russell; R. Schmid; B. Tipton; Junhua Yuan
We present a detailed report of a measurement of the neutron β-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented.
Physical Review C | 2013
M. P. Mendenhall; R. Carr; B. W. Filippone; K. P. Hickerson; J. L. Liu; A. Pérez Galván; R. Picker
A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30).
Physical Review C | 2013
M. P. Mendenhall; R. W. Pattie; Y. Bagdasarova; D. B. Berguno; L. J. Broussard; R. Carr; S. Currie; X. Ding; B. W. Filippone; A. Garc; P. Geltenbort; K. P. Hickerson; J. Hoagland; Adam Holley; R. Hong; Takeyasu M. Ito; A. Knecht; Y. Liu; J. Liu; M. Makela; R. R. Mammei; J. W. Martin; Dan Melconian; S. D. Moore; C. L. Morris; M. L. Pitt; B. Plaster; J. C. Ramsey; R. Rios; A. Saunders
A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30).
Physical Review C | 2012
B. Plaster; J. Hoagland; R. W. Pattie; S. Clayton; P. Geltenbort; R. Mortensen; C. Wrede; A. García; H. Yan; T. J. Bowles; A. Saunders; B. W. Filippone; R. Rios; Dan Melconian; R. R. Mammei; R. Carr; Jianbei Liu; B. Hona; B. VornDick; M. Makela; A. R. Young; K. P. Hickerson; H. O. Back; M. P. Mendenhall; R. B. Vogelaar; T. M. Ito; S. J. Seestrom; J. C. Ramsey; Gary E. Hogan; W. E. Sondheim
We present a detailed report of a measurement of the neutron β-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented.
Physical Review C | 2017
K. P. Hickerson; X. Sun; R. Carr; B. W. Filippone; J. Liu; M. P. Mendenhall; A. Pérez Galván; R. Picker
Precision measurements of free-neutron β decay have been used to precisely constrain our understanding of the weak interaction. However, the neutron Fierz interference term b_n, which is particularly sensitive to beyond-standard-model tensor currents at the TeV scale, has thus far eluded measurement. Here we report the first direct constraints on this term, finding b_n=0.067±0.005_(stat)^(+0.090)_(−0.061)_(sys), consistent with the standard model. The uncertainty is dominated by absolute energy reconstruction and the linearity of the β spectrometer energy response.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017
S. Slutsky; C.M. Swank; A. Biswas; R. Carr; J. Escribano; B. W. Filippone; W. C. Griffith; M. P. Mendenhall; N. Nouri; C. Osthelder; A. Pérez Galván; R. Picker; B. Plaster
A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.
Physical Review C | 2013
M. P. Mendenhall; R. W. Pattie; Y. Bagdasarova; D. B. Berguno; L. J. Broussard; R. Carr; S. Currie; X. Ding; B. W. Filippone; A. García; P. Geltenbort; K. P. Hickerson; J. Hoagland; Adam Holley; R. Hong; T. M. Ito; A. Knecht; C.-Y. Liu; J. Liu; M. Makela; R. R. Mammei; J. W. Martin; Dan Melconian; S. D. Moore; C. L. Morris; A. Pérez Galván; R. Picker; M. L. Pitt; B. Plaster; J. C. Ramsey
A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30).
Physical Review C | 2012
B. Plaster; R. Rios; H. O. Back; T. J. Bowles; L. J. Broussard; R. Carr; S. Clayton; S. Currie; B. W. Filippone; A. García; P. Geltenbort; K. P. Hickerson; J. Hoagland; Gary E. Hogan; B. Hona; Adam Holley; T. M. Ito; C.-Y. Liu; Jianbei Liu; M. Makela; R. R. Mammei; J. W. Martin; Dan Melconian; M. P. Mendenhall; C. L. Morris; R. Mortensen; R. W. Pattie; A. Pérez Galván; M. L. Pitt; J. C. Ramsey
We present a detailed report of a measurement of the neutron β-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2011
A. Pérez Galván; B. Plaster; J. Boissevain; R. Carr; B. W. Filippone; M. P. Mendenhall; R. Schmid; R. Alarcon; S. Balascuta