Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A-Rum Yoon is active.

Publication


Featured researches published by A-Rum Yoon.


Cancer Research | 2007

Silibinin Sensitizes Human Glioma Cells to TRAIL-Mediated Apoptosis via DR5 Up-regulation and Down-regulation of c-FLIP and Survivin

Yong-gyu Son; Eun Hee Kim; Jin Yeop Kim; Seung U. Kim; Taeg Kyu Kwon; A-Rum Yoon; Chae-Ok Yun; Kyeong Sook Choi

Silibinin, a flavonoid isolated from Silybum marianum, has been reported to have cancer chemopreventive and therapeutic effects. Here, we show that treatment with subtoxic doses of silibinin in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, but not in human astrocytes, suggesting that this combined treatment may offer an attractive strategy for safely treating gliomas. Although the proteolytic processing of procaspase-3 by TRAIL was partially blocked in glioma cells, cotreatment with silibinin efficiently recovered TRAIL-induced caspase activation in these cells. Silibinin treatment up-regulated DR5, a death receptor of TRAIL, in a transcription factor CHOP-dependent manner. Furthermore, treatment with silibinin down-regulated the protein levels of the antiapoptotic proteins FLIP(L), FLIP(S), and survivin through proteasome-mediated degradation. Taken together, our results show that the activity of silibinin to modulate multiple components in the death receptor-mediated apoptotic pathway is responsible for its ability to recover TRAIL sensitivity in TRAIL-resistant glioma cells.


Gene Therapy | 2010

Effect of decorin on overcoming the extracellular matrix barrier for oncolytic virotherapy

Il-Kyu Choi; Yongnam Lee; Ji Young Yoo; A-Rum Yoon; Hyun-Kyung Kim; Dong Suk Kim; D. G. Seidler; J. Kim; Chae-Ok Yun

The pressing challenge for contemporary gene therapy is to deliver enough therapeutic genes to enough cancer cells in vivo. With the aim of improving viral distribution and tumor penetration, we explored the use of decorin to enhance viral spreading and tumor tissue penetration. We generated decorin-expressing replication-incompetent (dl-LacZ-DCNG, dl-LacZ-DCNQ and dl-LacZ-DCNK) and replication-competent (Ad-ΔE1B-DCNG, Ad-ΔE1B-DCNQ and Ad-ΔE1B-DCNK) adenoviruses (Ads). Point mutants of decorin gene (DCNG), DCNK and DCNQ, have a negative and moderate binding affinity to type-I collagen fibril, respectively. In both tumor spheroids and established solid tumors in vivo, tissue penetration potency of dl-LacZ-DCNG was greatly enhanced than those of dl-LacZ, dl-LacZ-DCNQ and dl-LacZ-DCNK, and this enhanced tissue penetration effect derived from decorin-expressing Ad was dependent on the binding affinity of decorin to collagen fibril. Expression of DCNG enhanced viral spread of replicating Ad, leading to improved tumor reduction and survival benefit. Moreover, the tumoricidal effects of Ad-ΔE1B-DCNQ and Ad-ΔE1B-DCNK were lessened, as the binding affinity to collagen was decreased, showing that the increased cancer cell cytotoxicity was driven by the action of decorin on extracellular matrix (ECM). Furthermore, Ad-ΔE1B-DCNG substantially decreased ECM components within the tumor tissue. Finally, intratumoral injection of Ad-ΔE1B-DCNG in primary tumor site greatly reduced the formation of B16BL6 melanoma cell pulmonary metastases in mice. Taken together, these data show the utility of decorin as a dispersion agent and highlight its utility and potential in improving the efficacy of replicating Ad-mediated cancer gene therapy.


Cell Death and Disease | 2017

Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin

Mi Jin Yoon; Yoon-A Kang; Lee Ja; Il Yong Kim; Moon-Hee Kim; Yong-Sung Lee; Junseong Park; Lee By; In Ah Kim; Hyun-Taek Kim; Sungwan Kim; A-Rum Yoon; Chae-Ok Yun; Eunhee Kim; Kyu-Yup Lee; Kyeong Sook Choi

Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells.


Molecular Cancer Therapeutics | 2006

Suicide cancer gene therapy using pore-forming toxin, streptolysin O

Wan Seok Yang; Sue-O Park; A-Rum Yoon; Ji Young Yoo; Min Kyung Kim; Chae-Ok Yun; Chul-Woo Kim

We cloned the streptolysin O gene from the Streptococcus pyogenes genome and tested the possibility of using it as an anticancer reagent. Transient transfection of the streptolysin O gene efficiently killed 293T cells after 12 hours of transfection as determined by lactate dehydrogenase release and propidium iodide uptake. No caspase activity was observed and necrosis was prominent during streptolysin O-induced cell death. Biochemical analysis of streptolysin O protein revealed that the deletion of only 5 amino acids from the COOH-terminal region of streptolysin O, which is essential for cholesterol binding activity, abolished its cell-killing activity, whereas the NH2-terminal region was more resilient, i.e., up to 115 amino acids could be deleted without changing its cell-killing activity. We generated a streptolysin O-expressing adenovirus and injected it into human cervical cancer cell–derived tumors grown in a nude mouse model. Twenty-one days postinjection, the average size of tumors in the streptolysin O adenovirus–injected group was 29.3% of that of the control PBS-treated group. Our results show that the genes of pore-forming toxins, like streptolysin O protein, have the potential to establish a novel class of suicide gene therapeutic reagents. [Mol Cancer Ther 2006;5(6):1610-9]


Journal of Biological Chemistry | 2009

ZBTB2, a Novel Master Regulator of the p53 Pathway

Bu-Nam Jeon; Won-Il Choi; Mi-Young Yu; A-Rum Yoon; Myung-Hwa Kim; Chae-Ok Yun; Man-Wook Hur

We found that ZBTB2, a POK family transcription factor, is a potent repressor of the ARF-HDM2-p53-p21 pathway important in cell cycle regulation. ZBTB2 repressed transcription of the ARF, p53, and p21 genes, but activated the HDM2 gene. In particular, ZBTB2 repressed transcription of the p21 gene by acting on the two distal p53 binding elements and the proximal Sp1 binding GC-box 5/6 elements. ZBTB2 directly interacted with Sp1 via its POZ domain and zinc fingers, which was important in the repression of transcription activation by Sp1. ZBTB2 and Sp1 competed with each other in binding to the GC-box 5/6 elements and the two p53 binding elements. ZBTB2 directly interacted with p53 via its zinc fingers, inhibiting p53 binding and repressing transcription activation by p53. The POZ domain, required for transcription repression, interacted with corepressors such as BCoR, NCoR, and SMRT. The interactions deacetylated histones Ac-H3 and -H4 at the proximal promoter. Although ectopic ZBTB2 stimulated cell proliferation, knock-down of ZBTB2 expression decreased cell proliferation and DNA synthesis. Overall, our data suggest that ZBTB2 is a potential proto-oncogenic master control gene of the p53 pathway and, in particular, is a potent transcription repressor of the cell cycle arrest gene p21 by inhibiting p53 and Sp1.


Nucleic Acids Research | 2011

MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3′ untranslated region

A-Rum Yoon; Ran Gao; Zeenia Kaul; Il-Kyu Choi; Jihoon Ryu; Jane R. Noble; Yoshio Kato; Soichiro Saito; Takashi Hirano; Tetsuro Ishii; Roger R. Reddel; Chae-Ok Yun; Sunil C. Kaul; Renu Wadhwa

MicroRNAs (miRNAs) are a class of noncoding small RNAs that act as negative regulators of gene expression. To identify miRNAs that may regulate human cell immortalization and carcinogenesis, we performed comparative miRNA array profiling of human normal and SV40-T antigen immortalized cells. We found that miR-296 was upregulated in immortalized cells that also had activation of telomerase. By an independent experiment on genomic analysis of cancer cells we found that chromosome region (20q13.32), where miR-296 is located, was amplified in 28/36 cell lines, and most of these showed enriched miR-296 expression. Overexpression of miR-296 in human cancer cells, with and without telomerase activity, had no effect on their telomerase function. Instead, it suppressed p53 function that is frequently downregulated during human cell immortalization and carcinogenesis. By monitoring the activity of a luciferase reporter connected to p53 and p21WAF1 (p21) untranslated regions (UTRs), we demonstrate that miR-296 interacts with the p21-3′UTR, and the Hu binding site of p21-3′UTR was identified as a potential miR-296 target site. We demonstrate for the first time that miR-296 is frequently upregulated during immortalization of human cells and contributes to carcinogenesis by downregulation of p53-p21WAF1 pathway.


Journal of Biological Chemistry | 2014

Identification and Functional Characterization of Nuclear Mortalin in Human Carcinogenesis

Jihoon Ryu; Zeenia Kaul; A-Rum Yoon; Ye Liu; Tomoko Yaguchi; Youjin Na; Hyo Min Ahn; Ran Gao; Il-Kyu Choi; Chae-Ok Yun; Sunil C. Kaul; Renu Wadhwa

Background: Mortalin/mtHsp70 is an essential stress chaperone frequently enriched in cancers. Results: Mortalin is present in the nucleus of cancer cells where it causes strong inactivation of tumor suppressor protein p53 and activation of telomerase and heterogeneous ribonucleoprotein K (hnRNP-K) proteins. Conclusion: Nuclear mortalin promotes carcinogenesis. Significance: This study is important for the development of mortalin-based anticancer treatments. The Hsp70 family protein mortalin is an essential chaperone that is frequently enriched in cancer cells and exists in various subcellular sites, including the mitochondrion, plasma membrane, endoplasmic reticulum, and cytosol. Although the molecular mechanisms underlying its multiple subcellular localizations are not yet clear, their functional significance has been revealed by several studies. In this study, we examined the nuclear fractions of human cells and found that the malignantly transformed cells have more mortalin than the normal cells. We then generated a mortalin mutant that lacked a mitochondrial targeting signal peptide. It was largely localized in the nucleus, and, hence, is called nuclear mortalin (mot-N). Functional characterization of mot-N revealed that it efficiently protects cancer cells against endogenous and exogenous oxidative stress. Furthermore, compared with the full-length mortalin overexpressing cancer cells, mot-N derivatives showed increased malignant properties, including higher proliferation rate, colony forming efficacy, motility, and tumor forming capacity both in in vitro and in vivo assays. We demonstrate that mot-N promotes carcinogenesis and cancer cell metastasis by inactivation of tumor suppressor protein p53 functions and by interaction and functional activation of telomerase and heterogeneous ribonucleoprotein K (hnRNP-K) proteins.


Journal of Controlled Release | 2015

Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs)

Young Sook Lee; Kwang Suk Lim; Jung-Eun Oh; A-Rum Yoon; Wan Seok Joo; Hyun Soo Kim; Chae-Ok Yun; Sung Wan Kim

Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified water/oil/water (W1/O/W2) double emulsion solvent evaporation method was used for the construction of porous microspheres. PEI1.8k was blended with poly(lactic-co-glycolic acid) (PLGA) to enhance electrostatic cellular attachment to the microspheres. The porous PLGA/PEI1.8k (PPP) particles demonstrated an average particle size of 290μm and an average pore size of 14.3μm, providing a micro-carrier for the MSC delivery. PPP particles allowed for better attachment of rMSCs than non-porous PLGA/PEI1.8k (NPP) particles and non-porous (NP) and porous PLGA (PP) microspheres. rMSC successfully grew on the PPP particles for 2weeks in vitro. Next, PPP particles loaded with 3 different amounts of hMSC showed increased in vivo engraftment rates and maintained the stemness characteristics of hMSC compared with hMSCs-alone group in rats 2weeks after intramyocardial administration. These customized PPP particles for MSC delivery are a biodegradable and injectable scaffold that can be used for clinical applications.


Cell Death & Differentiation | 2011

Molecular characterization of apoptosis induced by CARF silencing in human cancer cells

Caroline T. Cheung; Rumani Singh; A-Rum Yoon; Md. Kamrul Hasan; Tomoko Yaguchi; Sunil C. Kaul; Chae-Ok Yun; Renu Wadhwa

Collaborator of ARF (CARF) was cloned as an ARF-interacting protein and shown to regulate the p53–p21WAF1–HDM2 pathway, which is central to tumor suppression via senescence and apoptosis. We had previously reported that CARF inhibition in cancer cells led to polyploidy and caspase-dependent apoptosis, however, the mechanisms governing this phenomenon remained unknown. Thus, we examined various cell death and survival pathways including the mitochondrial stress, ataxia telangiectasia mutated (ATM)–ATR, Ras–MAP kinase and retinoblastoma cascades. We found that CARF is a pleiotropic regulator with widespread effects; its suppression affected all investigated pathways. Most remarkably, it protected the cells against genotoxicity; CARF knockdown elicited DNA damage response as evidenced by increased levels of phosphorylated ATM and γH2AX, leading to induction of mitotic arrest and eventual apoptosis. We also show that the CARF-silencing-induced apoptosis in vitro translates to in vivo. In a human tumor xenograft mouse model, treatment of developing tumors with short hairpin RNA (shRNA) against CARF via an adenovirus carrier induced complete suppression of tumor growth, suggesting that CARF shRNA is a strong candidate for an anticancer reagent. We demonstrate that CARF has a vital role in genome preservation and tumor suppression and CARF siRNA is an effective novel cancer therapeutic agent.


Gene Therapy | 2009

Double E1B 19 kDa- and E1B 55 kDa-deleted oncolytic adenovirus in combination with radiotherapy elicits an enhanced anti-tumor effect

Jung-Hee Kim; Pyung-Hwan Kim; Ji Young Yoo; A-Rum Yoon; Hyun-Jung Choi; Jinsil Seong; I. W. Kim; J. Kim; Chae-Ok Yun

Radiation therapy, a mainstay for anti-tumor therapeutic regimens for a variety of tumor types, triggers tumor cell apoptotic pathways by either directly eliciting DNA damage or indirectly inducing the formation of oxygen radicals. In an effort to augment radiation therapy, we generated a double E1B 19 kDa- and E1B 55 kDa-deleted oncolytic adenovirus (Ad−ΔE1B19/55). In combination with radiotherapy, greater cytotoxicity was observed for Ad−ΔE1B19/55 than for the single E1B 55 kDa-deleted oncolytic Ad (Ad−ΔE1B55). Consistent with this observation, higher levels of p53, phospho-p53, phospho-Chk1, phospho-Chk2, PI3K (phosphatidylinositol-3-kinase), phospho-AKT, cytochrome c, and cleavage of PARP (poly (ADP-ribose) polymerase) and caspase-3 were observed in cells treated with Ad−ΔE1B19/55 compared with those treated with Ad−ΔE1B55, indicating that the E1B 19 kDa present in Ad−ΔE1B55 may partially block radiation-induced apoptosis. A significant therapeutic benefit was also observed in vivo when oncolytic Ads and radiation were combined. Tumors treated with Ad−ΔE1B19/55 and radiation showed large areas of necrosis and apoptosis with the corresponding induction of p53. Finally, consistent with in vitro observations, the combination of Ad−ΔE1B19/55 and radiation was more efficacious than the combination of Ad−ΔE1B55 and radiation. Taken together, these results present a strong therapeutic rationale for combining radiation therapy with E1B 19 kDa-deleted oncolytic Ad.

Collaboration


Dive into the A-Rum Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renu Wadhwa

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge