Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dayananda Kasala is active.

Publication


Featured researches published by Dayananda Kasala.


Journal of Controlled Release | 2015

pH-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis

Joung Woo Choi; Soo Jung Jung; Dayananda Kasala; June Kyu Hwang; Jun Hu; You Han Bae; Chae-Ok Yun

Although oncolytic adenoviruses (Ads) are an attractive option for cancer gene therapy, the intravenous administration of naked Ad still encounters unfavorable host responses, non-specific interactions, and heterogeneity in targeted cancer cells. To overcome these obstacles and achieve specific targeting of the tumor microenvironment, Ad was coated with the pH-sensitive block copolymer, methoxy poly(ethylene glycol)-b-poly(l-histidine-co-l-phenylalanine) (PEGbPHF). The physicochemical properties of the generated nanocomplex, Ad/PEGbPHF, were assessed. At pH6.4, GFP-expressing Ad/PEGbPHF induced significantly higher GFP expression than naked Ad in both coxsackie and adenovirus receptor (CAR)-positive and -negative cells. To assess the therapeutic efficacy of the Ad/PEGbPHF complex platform, an oncolytic Ad expressing VEGF promoter-targeting transcriptional repressor (KOX) was used to form complexes. At pH6.4, KOX/PEGbPHF significantly suppressed VEGF gene expression, cancer cell migration, vessel sprouting, and cancer cell killing effect compared to naked KOX or KOX/PEGbPHF at pH7.4, demonstrating that KOX/PEGbPHF can overcome the lack of CAR that is frequently observed in tumor tissues. The antitumor activity of KOX/PEGbPHF systemically administered to a tumor xenograft model was significantly higher than that of naked KOX. Furthermore, KOX/PEGbPHF showed lower hepatic toxicity and did not induce an innate immune response against Ad. Altogether, these results demonstrate that pH-sensitive polymer-coated Ad complex significantly increases net positive charge upon exposure to hypoxic tumor microenvironment, allowing passive targeting to the tumor tissue. It may offer superior potential for systemic therapy, due to its improved tumor selectivity, increased therapeutic efficacy, and lower toxicity compared to naked KOX.


Expert Opinion on Drug Delivery | 2014

Utilizing adenovirus vectors for gene delivery in cancer

Dayananda Kasala; Joung Woo Choi; Sung Wan Kim; Chae-Ok Yun

Introduction: Adenovirus (Ad) is a promising candidate vector for cancer gene therapy because of its unique characteristics, which include efficient infection, high loading capacity and lack of insertional mutagenesis. However, systemic administration of Ad is hampered by the hosts immune response, hepatocytoxicity, short half-life of the vector and low accumulation at the target site. For these reasons, clinical applications of Ad are currently restricted. Areas covered: In this review, we focus on recent developments in Ad nanocomplex systems that improve the transduction and targeting efficacy of Ad vectors in cancer gene therapy. We discuss the development of different Ad delivery systems, including surface modification of Ad, smart Ad/nanohybrid systems and hydrogels for sustained release of Ad. Expert opinion: The fusion of bioengineering and biopharmaceutical technologies can provide solutions to the obstacles encountered during systemic delivery of Ads. The in vivo transgene expression efficiency of Ad nanocomplex systems is typically high, and animal tumor models demonstrate that systemic administration of these Ad complexes can arrest tumor growth. However, further optimization of these smart Ad nanocomplex systems is needed to increase their effectiveness and safety for clinical application in cancer gene therapy.


Journal of Controlled Release | 2015

Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model

Youjin Na; Joung Woo Choi; Dayananda Kasala; Jinwoo Hong; Eonju Oh; Yan Li; Soo Jung Jung; Sung Wan Kim; Chae-Ok Yun

Pancreatic cancer is highly aggressive, malignant, and notoriously difficult to cure using conventional cancer therapies. These conventional therapies have significant limitations due to excessive extracellular matrix (ECM) of pancreatic cancer and poor cancer specificity. The excess ECM prevents infiltration of drugs into the inner layer of the solid tumor. Therefore, novel treatment modalities that can specifically target the tumor and degrade the ECM are required for effective therapy. In the present study, we used ECM-degrading and Wnt signal-disrupting oncolytic adenovirus (oAd/DCN/LRP) to achieve a desirable therapeutic outcome against pancreatic cancer. In addition, to overcome the limitations in systemic delivery of oncolytic Ad (oAd) and to specifically target pancreatic cancer, neurotensin peptide (NT)-conjugated polyethylene glycol (PEG) was chemically crosslinked to the surface of Ad, generating a systemically injectable hybrid system, oAd/DCN/LRP-PEG-NT. We tested the targeting and therapeutic efficacy of oAd/DCN/LRP-PEG-NT toward neurotensin receptor 1 (NTR)-overexpressing pancreatic cancer cells, both in vitro and in vivo. The oAd/DCN/LRP-PEG-NT elicited increased NTR-selective cancer cell killing and transduction efficiency when compared with a cognate control lacking NT (oAd/DCN/LRP-PEG). Furthermore, systemic administration of oAd/DCN/LRP-PEG-NT significantly decreased induction of innate and adaptive immune responses against Ad, and blood retention time was markedly prolonged by PEGylation. Moreover, NTR-targeting oAd elicited greater in vivo tumor growth suppression when compared with naked oAd and 9.5 × 10(6)-fold increased tumor-to-liver ratio. This significantly enhanced antitumor effect of oAd/DCN/LRP-PEG-NT was mediated by active viral replication and viral spreading, which was facilitated by ECM degradation and inhibition of Wnt signaling-related factors (Wnt, β-catenin, and/or vimentin) in the tumor tissues. Taken together, these results demonstrate that oAd/DCN/LRP-PEG-NT has strong therapeutic potential for systemic treatment of NTR-overexpressing pancreatic cancer due to its NTR-targeting ability, enhanced therapeutic efficacy, and safety.


Biomacromolecules | 2015

Safety profiles and antitumor efficacy of oncolytic adenovirus coated with bioreducible polymer in the treatment of a CAR negative tumor model

Soo Jung Jung; Dayananda Kasala; Joung Woo Choi; Soo Hwan Lee; June Kyu Hwang; Sung Wan Kim; Chae-Ok Yun

Adenovirus (Ad) vectors show promise as cancer gene therapy delivery vehicles, but immunogenic safety concerns and coxsackie and adenovirus receptor (CAR)-dependency have limited their use. Alternately, biocompatible and bioreducible nonviral vectors, including arginine-grafted cationic polymers, have been shown to deliver nucleic acids through a cell penetration peptide (CPP) and protein transduction domain (PTD) effect. We utilized the advantages of both viral and nonviral vectors to develop a hybrid gene delivery vehicle by coating Ad with mPEG-PEI-g-Arg-S-S-Arg-g-PEI-mPEG (Ad/PPSA). Characterization of Ad/PPSA particle size and zeta potential showed an overall size and cationic charge increase in a polymer concentration-dependent manner. Ad/PPSA also showed a marked transduction efficiency increase in both CAR-negative and -positive cells compared to naked Ad. Competition assays demonstrated that Ad/PPSA produced higher transgene expression levels than naked Ad and achieved CAR-independent transduction. Oncolytic Ad (DWP418)/PPSA was able to overcome the nonspecificity of polymer-only therapies by demonstrating cancer-specific killing effects. Furthermore, the DWP418/PPSA nanocomplex elicited a 2.24-fold greater antitumor efficacy than naked Ad in vivo. This was supported by immunohistochemical confirmation of Ad E1As accumulation in MCF7 xenografted tumors. Lastly, intravenous injection of DWP418/PPSA elicited less innate immune response compared to naked Ad, evaluated by interleukin-6 cytokine release into the serum. The increased antitumor effect and improved vector targeting to both CAR-negative and -positive cells make DWP418/PPSA a promising tool for cancer gene therapy.


Biomaterials | 2015

Dual tumor targeting with pH-sensitive and bioreducible polymer-complexed oncolytic adenovirus

Chang Yoon Moon; Joung Woo Choi; Dayananda Kasala; Soo Jung Jung; Sung Wan Kim; Chae-Ok Yun

Oncolytic adenoviruses (Ads) have shown great promise in cancer gene therapy but their efficacy has been compromised by potent immunological, biochemical, and specific tumor-targeting limitations. To take full advantage of the innate cancer-specific killing potency of oncolytic Ads but also exploit the subtleties of the tumor microenvironment, we have generated a pH-sensitive and bio-reducible polymer (PPCBA)-coated oncolytic Ad. Ad-PPCBA complexes showed higher cellular uptake at pH 6.0 than pH 7.4 in both high and low coxsackie and adenovirus receptor-(CAR)-expressing cells, thereby demonstrating Ad-PPCBAs ability to target the low pH hypoxic tumor microenvironment and overcome CAR dependence for target cell uptake. Endocytic mechanism studies indicated that Ad-PPCBA internalization is mediated by macropinocytosis instead of the CAR-dependent endocytic pathway that internalizes naked Ad. VEGF-specific shRNA-expressing oncolytic Ad complexed with PPCBA (RdB/shVEGF-PPCBA) elicited much more potent suppression of U87 human brain cancer cell VEGF gene expression in vitro, and human breast cancer MCF7 cell/Matrigel plug vascularization in a mouse model, when cancer cells had been previously infected at pH 6.0 versus pH 7.4. Moreover, intratumorally and intravenously injected RdB/shVEGF-PPCBA nanocomplexes elicited significantly higher therapeutic efficacy than naked virus in U87-tumor mouse xenograft models, reducing IL-6, ALT, and AST serum levels. These data demonstrated PPCBAs biocompatibility and capability to shield the Ad surface to prevent innate immune response against Ad after both intratumoral and systemic administration. Taken together, these results demonstrate that smart, tumor-specific, oncolytic Ad-PPCBA complexes can be exploited to treat both primary and metastatic tumors.


Journal of Controlled Release | 2016

Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model.

A-Rum Yoon; Dayananda Kasala; Yan Li; Jinwoo Hong; Wonsig Lee; Soo-Jung Jung; Chae-Ok Yun

Adenovirus (Ad)-mediated cancer gene therapy has been proposed as a promising alternative to conventional therapy for cancer. However, success of systemically administered naked Ad has been limited due to the immunogenicity of Ad and the induction of hepatotoxicity caused by Ads native tropism. In this study, we synthesized an epidermal growth factor receptor (EGFR)-specific therapeutic antibody (ErbB)-conjugated and PEGylated poly(amidoamine) (PAMAM) dendrimer (PPE) for complexation with Ad. Transduction of Ad was inhibited by complexation with PEGylated PAMAM (PP) dendrimer due to steric hindrance. However, PPE-complexed Ad selectively internalized into EGFR-positive cells with greater efficacy than either naked Ad or Ad complexed with PP. Systemically administered PPE-complexed oncolytic Ad elicited significantly reduced immunogenicity, nonspecific liver sequestration, and hepatotoxicity than naked Ad. Furthermore, PPE-complexed oncolytic Ad demonstrated prolonged blood retention time, enhanced intratumoral accumulation of Ad, and potent therapeutic efficacy in EGFR-positive orthotopic lung tumors in comparison with naked Ad. We conclude that ErbB-conjugated and PEGylated PAMAM dendrimer can efficiently mask Ads capsid and retarget oncolytic Ad to be efficiently internalized into EGFR-positive tumor while attenuating toxicity induced by systemic administration of naked oncolytic Ad.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy

Dayananda Kasala; A-Rum Yoon; Jinwoo Hong; Sung Wan Kim; Chae-Ok Yun

Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.


Journal of Thoracic Disease | 2017

Safety profile of EGFR-targeted hybrid vector system composed of PAMAM dendrimer and oncolytic adenovirus

A-Rum Yoon; Dayananda Kasala; Jinwoo Hong; Chae-Ok Yun

We would like to thank Huang et al . for comments on our recent report, which assessed the “antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with epidermal growth factor receptor (EGFR)-targeted poly(amidoamine) (PAMAM)-based dendrimer (1)”. We read the comments with great interest and acknowledging that this is an area urgently requiring more research to improve safety of nanomaterials in gene therapy for clinical application.


Molecular Therapy | 2016

113. Potent Therapeutic Efficacy of Neurotensin Receptor-Targeting and Extracellular Matrix-Degrading Oncolytic Adenovirus in an Orthotopic Pancreatic Tumor Model

Youjin Na; Joung-Woo Choi; Dayananda Kasala; Jinwoo Hong; Eonju Oh; Yan Li; Soo-Jung Jung; Sung Wan Kim; Chae-Ok Yun

Pancreatic cancer is highly aggressive, malignant, and notoriously difficult to cure using conventional cancer therapies. These conventional therapies have significant limitations due to excessive extracellular matrix (ECM) of pancreatic cancer and poor cancer specificity. The excess ECM prevents infiltration of drugs into the inner layer of the solid tumor. Therefore, novel treatment modalities that can specifically target the tumor and degrade the ECM are required for effective therapy. In the present study, we used ECM-degrading and Wnt signal-disrupting oncolytic adenovirus (oAd/DCN/LRP) to achieve a desirable therapeutic outcome against pancreatic cancer. In addition, to overcome the limitations in systemic delivery of oncolytic Ad (oAd) and to specifically target pancreatic cancer, neurotensin peptide (NT)-conjugated polyethylene glycol (PEG) was chemically crosslinked to the surface of Ad, generating a systemically injectable hybrid system, oAd/DCN/LRP-PEG-NT. We tested the targeting and therapeutic efficacy of oAd/DCN/LRP-PEG-NT toward neurotensin receptor 1 (NTR)-overexpressing pancreatic cancer cells, both in vitro and in vivo. The oAd/DCN/LRP-PEG-NT elicited increased NTR-selective cancer cell killing and increased transduction efficiency when compared with a cognate control lacking NT (oAd/DCN/LRP-PEG). Furthermore, systemic administration of oAd/DCN/LRP-PEG-NT significantly decreased induction of innate and adaptive immune responses against Ad, and blood retention time was markedly prolonged by PEGylation. Moreover, NTR-targeting oAd elicited greater in vivo tumor growth suppression when compared with naked oAd, and 9.5×106-fold increased tumor-to-liver ratio. This significantly enhanced antitumor effect of oAd/DCN/LRP-PEG-NT was mediated by active viral replication and viral spreading, which was facilitated by ECM degradation and inhibition of Wnt signaling-related factors (Wnt, β-catenin, and/or vimentin) in tumor tissues. Taken together, these results demonstrate that oAd/DCN/LRP-PEG-NT has strong therapeutic potential for systemic treatment of NTR-overexpressing pancreatic cancer, due to its NTR-targeting ability, enhanced therapeutic efficacy, and safety.


Molecular Therapy | 2016

115. Tumor Microenvironment-Targeting Hybrid Vector System Utilizing Oncolytic Adenovirus Complexed with pH-Sensitive and Bioreducible Polymer

Jung-Woo Choi; Dayananda Kasala; Chang Yoon Moon; Soo-Jung Jung; Sung Wan Kim; Chae-Ok Yun

Oncolytic adenoviruses (Ads) have shown great promise in cancer gene therapy but their efficacy has been compromised by potent immunological, biochemical, and specific tumor-targeting limitations. To take full advantage of the innate cancer-specific killing potency of oncolytic Ads but also exploit the subtleties of the tumor microenvironment, we have generated a pH-sensitive and bio-reducible polymer (PPCBA)-coated oncolytic Ad. Ad-PPCBA complexes showed higher cellular uptake at pH 6.0 than pH 7.4 in both high and low coxsackie and adenovirus receptor-(CAR)-expressing cells, thereby demonstrating Ad-PPCBAs ability to target the low pH hypoxic tumor microenvironment and overcome CAR dependence for target cell uptake. Endocytic mechanism studies indicated that Ad-PPCBA internalization is mediated by macropinocytosis instead of the CAR-dependent endocytic pathway that internalizes naked Ad. VEGF-specific shRNA-expressing oncolytic Ad complexed with PPCBA (RdB/shVEGF-PPCBA) elicited much more potent suppression of U87 human brain cancer cell VEGF gene expression in vitro, and human breast cancer MCF7 cell/Matrigel plug vascularization in a mouse model, when cancer cells had been previously infected at pH 6.0 versus pH 7.4. Moreover, intratumorally and intravenously injected RdB/shVEGF-PPCBA nanocomplexes elicited significantly higher therapeutic efficacy than naked virus in U87-tumor mouse xenograft models, reducing IL-6, ALT, and AST serum levels. These data demonstrated PPCBAs biocompatibility and capability to shield the Ad surface to prevent innate immune response against Ad after both intratumoral and systemic administration. Taken together, these results demonstrate that smart, tumor-specific, oncolytic Ad-PPCBA complexes can be exploited to treat both primary and metastatic tumors.

Collaboration


Dive into the Dayananda Kasala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge