Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. S. Denning is active.

Publication


Featured researches published by A. S. Denning.


Global Biogeochemical Cycles | 2006

TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003

D. F. Baker; R. M. Law; Kevin Robert Gurney; P. J. Rayner; Philippe Peylin; A. S. Denning; P. Bousquet; Lori Bruhwiler; Yu-Han Chen; P. Ciais; Inez Y. Fung; Martin Heimann; Jasmin G. John; Takashi Maki; Shamil Maksyutov; Kenneth A. Masarie; Michael J. Prather; Bernard Pak; Shoichi Taguchi; Zhengxin Zhu

Monthly CO2 fluxes are estimated across 1988–2003 for 22 emission regions using data from 78 CO2 measurement sites. The same inversion (method, priors, data) is performed with 13 different atmospheric transport models, and the spread in the results is taken as a measure of transport model error. Interannual variability (IAV) in the winds is not modeled, so any IAV in the measurements is attributed to IAV in the fluxes. When both this transport error and the random estimation errors are considered, the flux IAV obtained is statistically significant at P ≤ 0.05 when the fluxes are grouped into land and ocean components for three broad latitude bands, but is much less so when grouped into continents and basins. The transport errors have the largest impact in the extratropical northern latitudes. A third of the 22 emission regions have significant IAV, including the Tropical East Pacific (with physically plausible uptake/release across the 1997–2000 El Nino/La Nina) and Tropical Asia (with strong release in 1997/1998 coinciding with large-scale fires there). Most of the global IAV is attributed robustly to the tropical/southern land biosphere, including both the large release during the 1997/1998 El Nino and the post-Pinatubo uptake.


Global Biogeochemical Cycles | 2008

TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002-2003

Prabir K. Patra; R. M. Law; Wouter Peters; Christian Rödenbeck; Masayuki Takigawa; C. Aulagnier; Ian T. Baker; D. Bergmann; P. Bousquet; Jørgen Brandt; L. M. P. Bruhwiler; Philip Cameron-Smith; Jesper Christensen; F. Delage; A. S. Denning; S. Fan; Camilla Geels; Sander Houweling; Ryoichi Imasu; Ute Karstens; S. R. Kawa; J. Kleist; M. Krol; S.-J. Lin; R. Lokupitiya; Takashi Maki; Shamil Maksyutov; Yosuke Niwa; R. Onishi; N. Parazoo

The ability to reliably estimate CO2 fluxes from current in situ atmospheric CO2 measurements and future satellite CO2 measurements is dependent on transport model performance at synoptic and shorter timescales. The TransCom continuous experiment was designed to evaluate the performance of forward transport model simulations at hourly, daily, and synoptic timescales, and we focus on the latter two in this paper. Twenty-five transport models or model variants submitted hourly time series of nine predetermined tracers (seven for CO2) at 280 locations. We extracted synoptic-scale variability from daily averaged CO2 time series using a digital filter and analyzed the results by comparing them to atmospheric measurements at 35 locations. The correlations between modeled and observed synoptic CO2 variabilities were almost always largest with zero time lag and statistically significant for most models and most locations. Generally, the model results using diurnally varying land fluxes were closer to the observations compared to those obtained using monthly mean or daily average fluxes, and winter was often better simulated than summer. Model results at higher spatial resolution compared better with observations, mostly because these models were able to sample closer to the measurement site location. The amplitude and correlation of model-data variability is strongly model and season dependent. Overall similarity in modeled synoptic CO2 variability suggests that the first-order transport mechanisms are fairly well parameterized in the models, and no clear distinction was found between the meteorological analyses in capturing the synoptic-scale dynamics.


Global Biogeochemical Cycles | 1997

Carbon 13 exchanges between the atmosphere and biosphere

Inez Y. Fung; Christopher B. Field; Joseph A. Berry; Matthew V. Thompson; James T. Randerson; Carolyn M. Malmström; Peter M. Vitousek; G. James Collatz; P. J. Sellers; David A. Randall; A. S. Denning; F. Badeck; J. John

We present a detailed investigation of the gross 12C and 13C exchanges between the atmosphere and biosphere and their influence on the δ13C variations in the atmosphere. The photosynthetic discrimination Δ against 13C is derived from a biophysical model coupled to a general circulation model [Sellers et al., 1996a], where stomatal conductance and carbon assimilation are determined simultaneously with the ambient climate. The δ13C of the respired carbon is calculated by a biogeochemical model [Potter et al., 1993; Randerson et al., 1996] as the sum of the contributions from compartments with varying ages. The global flux-weighted mean photosynthetic discrimination is 12–16‰, which is lower than previous estimates. Factors that lower the discrimination are reduced stomatal conductance and C4 photosynthesis. The decreasing atmospheric δ13C causes an isotopic disequilibrium between the outgoing and incoming fluxes; the disequilibrium is ∼0.33‰ for 1988. The disequilibrium is higher than previous estimates because it accounts for the lifetime of trees and for the ages rather than turnover times of the biospheric pools. The atmospheric δ13C signature resulting from the biospheric fluxes is investigated using a three-dimensional atmospheric tracer model. The isotopic disequilibrium alone produces a hemispheric difference of ∼0.02‰ in atmospheric δ13C, comparable to the signal from a hypothetical carbon sink of 0.5 Gt C yr−1 into the midlatitude northern hemisphere biosphere. However, the rectifier effect, due to the seasonal covariation of CO2 fluxes and height of the atmospheric boundary layer, yields a background δ13C gradient of the opposite sign. These effects nearly cancel thus favoring a stronger net biospheric uptake than without the background CO2 gradient. Our analysis of the globally averaged carbon budget for the decade of the 1980s indicates that the biospheric uptake of fossil fuel CO2 is likely to be greater than the oceanic uptake; the relative proportions of the sinks cannot be uniquely determined using 12C and 13C alone. The land-ocean sink partitioning requires, in addition, information about the land use source, isotopic disequilibrium associated with gross oceanic exchanges, as well as the fractions of C3 and C4 vegetation involved in the biospheric uptake.


Journal of Geophysical Research | 2007

Precision requirements for space-based XCO 2 data

Charles E. Miller; David Crisp; Philip L. DeCola; Seth Carlton Olsen; James T. Randerson; Anna M. Michalak; Alanood A. A. A. Alkhaled; P. J. Rayner; Daniel J. Jacob; Parvadha Suntharalingam; Dylan B. A. Jones; A. S. Denning; Melville E. Nicholls; Scott C. Doney; Steven Pawson; Hartmut Boesch; Brian J. Connor; Inez Y. Fung; Denis M. O'Brien; R. J. Salawitch; Stanley P. Sander; Bidyut K. Sen; Pieter P. Tans; G. C. Toon; Paul O. Wennberg; Steven C. Wofsy; Yuk L. Yung; R. M. Law

Precision requirements are determined for space-based column-averaged CO_2 dry air mole fraction (X_(CO)_2) data. These requirements result from an assessment of spatial and temporal gradients in (X_(CO)_2) the relationship between (X_(CO)_2) precision and surface CO_2 flux uncertainties inferred from inversions of the (X_(CO)_2) data, and the effects of (X_(CO)_2) biases on the fidelity of CO_2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these (X_(CO)_2) data precision requirements.


Journal of Geophysical Research | 2008

Seasonal drought stress in the Amazon: Reconciling models and observations

Ian T. Baker; Lara Prihodko; A. S. Denning; Michael L. Goulden; Scott D. Miller; H. R. da Rocha

[1] The Amazon Basin is crucial to global circulatory and carbon patterns due to the large areal extent and large flux magnitude. Biogeophysical models have had difficulty reproducing the annual cycle of net ecosystem exchange (NEE) of carbon in some regions of the Amazon, generally simulating uptake during the wet season and efflux during seasonal drought. In reality, the opposite occurs. Observational and modeling studies have identified several mechanisms that explain the observed annual cycle, including: (1) deep soil columns that can store large water amount, (2) the ability of deep roots to access moisture at depth when near-surface soil dries during annual drought, (3) movement of water in the soil via hydraulic redistribution, allowing for more efficient uptake of water during the wet season, and moistening of near-surface soil during the annual drought, and (4) photosynthetic response to elevated light levels as cloudiness decreases during the dry season. We incorporate these mechanisms into the third version of the Simple Biosphere model (SiB3) both singly and collectively, and confront the results with observations. For the forest to maintain function through seasonal drought, there must be sufficient water storage in the soil to sustain transpiration through the dry season in addition to the ability of the roots to access the stored water. We find that individually, none of these mechanisms by themselves produces a simulation of the annual cycle of NEE that matches the observed. When these mechanisms are combined into the model, NEE follows the general trend of the observations, showing efflux during the wet season and uptake during seasonal drought.


Global Biogeochemical Cycles | 1996

Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions

Robert Law; P. J. Rayner; A. S. Denning; D. Erickson; Inez Y. Fung; Martin Heimann; Stephen C. Piper; Michel Ramonet; Shoichi Taguchi; J. A. Taylor; Cathy M. Trudinger; I. G. Watterson

Carbon dioxide concentrations due to fossil fuel burning and CO 2 exchange with the terrestrial biosphere have been modeled with 12 different three-dimensional atmospheric transport models. The models include both on-line and off-line types and use a variety of advection algorithms and subgrid scale parameterizations. A range of model resolutions is also represented. The modeled distributions show a large range of responses. For the experiment using the fossil fuel source, the annual mean meridional gradient at the surface vases by a factor of 2. This suggests a factor of 2 variation in the efficiency of surface interhemispheric exchange as much due to differences in model vertical transport as to horizontal differences. In the upper troposphere, zonal mean gradients within the northern hemisphere vary in sign. In the terrestrial biotic source experiment, the spatial distribution of the amplitude and the phase of the seasonal cycle of surface CO 2 concentration vary little between models. However, the magnitude of the amplitudes varies similarly to the fossil case. Differences between modeled and observed seasonal cycles in the northern extratropics suggest that the terrestrial biotic source is overestimated in late spring and underestimated in winter. The annual mean response to the seasonal source also shows large differences in magnitude. The uncertainty in hemispheric carbon budgets implied by the differences in interhemispheric exchange times is comparable to those quoted by the Intergovernmental Panel on Climate Change for fossil fuel and ocean uptake and smaller than those for terrestrial fluxes. We outline approaches which may reduce this component in CO 2 budget uncertainties.


Global Biogeochemical Cycles | 2008

TransCom model simulations of hourly atmospheric CO2 : experimental overview and diurnal cycle results for 2002

R. M. Law; Wouter Peters; Christian Rödenbeck; C. Aulagnier; Ian T. Baker; D. Bergmann; P. Bousquet; Jørgen Brandt; L. M. P. Bruhwiler; Philip Cameron-Smith; Jesper Christensen; F. Delage; A. S. Denning; S. Fan; Camilla Geels; Sander Houweling; Ryoichi Imasu; Ute Karstens; S. R. Kawa; J. Kleist; M. Krol; S.-J. Lin; R. Lokupitiya; Takashi Maki; Shamil Maksyutov; Yosuke Niwa; R. Onishi; N. Parazoo; Prabir K. Patra; G. Pieterse

[1] A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model variants participated in the comparison. Hourly concentration time series were submitted for 280 sites along with vertical profiles, fluxes, and meteorological variables at 100 sites. The submitted results have been analyzed for diurnal variations and are compared with observed CO2 in 2002. Mean summer diurnal cycles vary widely in amplitude across models. The choice of sampling location and model level account for part of the spread suggesting that representation errors in these types of models are potentially large. Despite the model spread, most models simulate the relative variation in diurnal amplitude between sites reasonably well. The modeled diurnal amplitude only shows a weak relationship with vertical resolution across models; differences in near-surface transport simulation appear to play a major role. Examples are also presented where there is evidence that the models show useful skill in simulating seasonal and synoptic changes in diurnal amplitude.


Global Biogeochemical Cycles | 2002

A possible global covariance between terrestrial gross primary production and 13C discrimination: Consequences for the atmospheric 13C budget and its response to ENSO

James T. Randerson; G. J. Collatz; Julianna Eileen Fessenden; A. D. Munoz; Christopher J. Still; Joseph A. Berry; Inez Y. Fung; Neil S. Suits; A. S. Denning

the potential to influence the 13 C budget of the atmosphere because these changes scale with the relatively large one-way gross primary production (GPP) flux. Over a period of days to years, this atmospheric isotopic forcing is damped by the return flux consisting mostly of respiration, Fire, and volatile organic carbon losses. Here we explore the magnitude of this class of isotopic disequilibria with an ecophysiological model (SiB2) and a double deconvolution inversion framework that includes timevarying discrimination for the period of 1981–1994. If the net land carbon sink and plant 13 C discrimination covary on interannual timescales at the global scale, consistent with


Global Biogeochemical Cycles | 2002

Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere‐atmosphere model

James T. Randerson; Christopher J. Still; J. J. Ballé; Inez Y. Fung; Scott C. Doney; Pieter P. Tans; T. J. Conway; James W. C. White; Bruce H. Vaughn; Neil S. Suits; A. S. Denning

Estimating discrimination against ^(13)C during photosynthesis at landscape, regional, and biome scales is difficult because of large-scale variability in plant stress, vegetation composition, and photosynthetic pathway. Here we present estimates of ^(13)C discrimination for northern biomes based on a biosphere-atmosphere model and on National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory and Institute of Arctic and Alpine Research remote flask measurements. With our inversion approach, we solved for three ecophysiological parameters of the northern biosphere (^(13)C discrimination, a net primary production light use efficiency, and a temperature sensitivity of heterotrophic respiration (a Q10 factor)) that provided a best fit between modeled and observed δ^(13)C and CO_2. In our analysis we attempted to explicitly correct for fossil fuel emissions, remote C4 ecosystem fluxes, ocean exchange, and isotopic disequilibria of terrestrial heterotrophic respiration caused by the Suess effect. We obtained a photosynthetic discrimination for arctic and boreal biomes between 19.0 and 19.6‰. Our inversion analysis suggests that Q10 and light use efficiency values that minimize the cost function covary. The optimal light use efficiency was 0.47 gC MJ^(−1) photosynthetically active radiation, and the optimal Q10 value was 1.52. Fossil fuel and ocean exchange contributed proportionally more to month-to-month changes in the atmospheric growth rate of δ^(13)C and CO_2 during winter months, suggesting that remote atmospheric observations during the summer may yield more precise estimates of the isotopic composition of the biosphere.


Tellus B | 2010

Using continental observations in global atmospheric inversions of CO2: North American carbon sources and sinks

M. P. Butler; Kenneth J. Davis; A. S. Denning; S. R. Kawa

We evaluate North American carbon fluxes using a monthly global Bayesian synthesis inversion that includes wellcalibrated carbon dioxide concentrations measured at continental flux towers. We employ the NASA Parametrized Chemistry Tracer Model (PCTM) for atmospheric transport and a TransCom-style inversion with subcontinental resolution. We subsample carbon dioxide time series at four North American flux tower sites for mid-day hours to ensure sampling of a deep, well-mixed atmospheric boundary layer. The addition of these flux tower sites to a global network reduces North America mean annual flux uncertainty for 2001–2003 by 20% to 0.4 Pg C yr-1 compared to a network without the tower sites. North American flux is estimated to be a net sink of 1.2 ± 0.4 Pg C yr-1 which is within the uncertainty bounds of the result without the towers. Uncertainty reduction is found to be local to the regions within North America where the flux towers are located, and including the towers reduces covariances between regions within NorthAmerica. Mid-day carbon dioxide observations from flux towers provide a viable means of increasing continental observation density and reducing the uncertainty of regional carbon flux estimates in atmospheric inversions.

Collaboration


Dive into the A. S. Denning's collaboration.

Top Co-Authors

Avatar

Ian T. Baker

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

S. R. Kawa

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Inez Y. Fung

University of California

View shared research outputs
Top Co-Authors

Avatar

N. Parazoo

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Berry

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

R. M. Law

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Lokupitiya

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge