Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inez Y. Fung is active.

Publication


Featured researches published by Inez Y. Fung.


Journal of Climate | 2006

Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison

Pierre Friedlingstein; Peter M. Cox; Richard A. Betts; Laurent Bopp; W. von Bloh; Victor Brovkin; P. Cadule; Scott C. Doney; Michael Eby; Inez Y. Fung; G. Bala; Jasmin G. John; Chris D. Jones; Fortunat Joos; Tomomichi Kato; Michio Kawamiya; Wolfgang Knorr; Keith Lindsay; H. D. Matthews; Thomas Raddatz; P. J. Rayner; Christian H. Reick; Erich Roeckner; K.-G. Schnitzler; Reiner Schnur; Kuno M. Strassmann; Andrew J. Weaver; Chisato Yoshikawa; Ning Zeng

Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.


Science | 1990

Observational Contrains on the Global Atmospheric Co2 Budget

Pieter P. Tans; Inez Y. Fung; Taro Takahashi

Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.


Journal of Geophysical Research | 1991

Three-Dimensional Model Synthesis of the Global Methane Cycle

Inez Y. Fung; Jasmin G. John; J. Lerner; Elaine Matthews; Michael J. Prather; L. P. Steele; Pj Fraser

The geographic and seasonal emission distributions of the major sources and sinks of atmospheric methane were compiled using methane flux measurements and energy and agricultural statistics in conjunction with global digital data bases of land surface characteristics and anthropogenic activities. Chemical destruction of methane in the atmosphere was calculated using three-dimensional OH fields every 5 days taken from Spivakovsky et al. (1990a, b). The signatures of each of the sources and sinks in the atmosphere were simulated using a global three-dimensional tracer transport model. Candidate methane budget scenarios were constructed according to mass balance of methane and its carbon isotopes. The verisimilitude of the scenarios was tested by their ability to reproduce the meridional gradient and seasonal variations of methane observed in the atmosphere. Constraints imposed by all the atmospheric observations are satisfied simultaneously by several budget scenarios. A preferred budget comprises annual destruction rates of 450 Tg by OH oxidation and 10 Tg by soil absorption and annual emissions of 80 Tg from fossil sources, 80 Tg from domestic animals, and 35 Tg from wetlands and tundra poleward of 50°N. Emissions from landfills, tropical swamps, rice fields, biomass burning, and termites total 295 Tg; however, the individual contributions of these terms cannot be determined uniquely because of the lack of measurements of direct fluxes and of atmospheric methane variations in regions where these sources are concentrated.


Journal of Geophysical Research | 1994

Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness

Ina Tegen; Inez Y. Fung

A global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere. The model includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture. Uplift and deposition are parameterized using analyzed winds and rainfall statistics that resolve high-frequency events. Dust transport in the atmosphere is simulated with the tracer transport model of the Goddard Institute for Space Studies. The simulated seasonal variations of dust concentrations show general reasonable agreement with the observed distributions, as do the size distributions at several observing sites. The discrepancies between the simulated and the observed dust concentrations point to regions of significant land surface modification. Monthly distribution of aerosol optical depths are calculated from the distribution of dust particle sizes. The maximum optical depth due to dust is 0.4-0.5 in the seasonal mean. The main uncertainties, about a factor of 3-5, in calculating optical thicknesses arise from the crude resolution of soil particle sizes, from insufficient constraint by the total dust loading in the atmosphere, and from our ignorance about adhesion, agglomeration, uplift, and size distributions of fine dust particles (less than 1 micrometer).


Journal of Geophysical Research | 1995

Contribution to the atmospheric mineral aerosol load from land surface modification

Ina Tegen; Inez Y. Fung

An estimation of the contribution of mineral dust from disturbed soils (i.e., soils affected by human activity and/or climate variability) to the total atmospheric mineral aerosol load is presented. A three-dimensional atmospheric dust transport model was used to simulate the distribution of dust optical thickness in response to individual dust sources, which include natural soils known to have been affected by the Saharan/Sahelian boundary shift, cultivation, deforestation, and wind erosion. The distributions extracted from advanced very high resolution radiometer (AVHRR) optical thickness retrievals were used to constrain likely source combinations. The results indicate that observed features like the seasonal shift of maximum optical thickness caused by Saharan dust over the Atlantic ocean are best reproduced if disturbed sources contribute 30–50% of the total atmospheric dust loading.


Journal of Geophysical Research | 1997

Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results

Ina Tegen; Peter Hollrig; Mian Chin; Inez Y. Fung; Daniel J. Jacob; Joyce E. Penner

We combine global distributions of aerosol loading resulting from transport models for soil dust, sulfate, sea salt, and carbonaceous aerosol. From the aerosol distributions we estimate optical thicknesses and compare them with Sun photometer measurements and satellite retrievals, thereby revealing problems with both model results and comparisons with such measurements. Globally, sulfate, dust, and carbonaceous particles appear to contribute equally to the total aerosol optical thickness. Owing to the different optical properties of different aerosol types, aerosol composition should be taken into consideration for estimating the aerosol climate effect as well as for aerosol retrievals from satellite measurements.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2001

Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean

J. Keith Moore; Scott C. Doney; David M. Glover; Inez Y. Fung

Abstract A global marine ecosystem mixed-layer model is used to study iron cycling and nutrient-limitation patterns in surface waters of the world ocean. The ecosystem model has a small phytoplankton size class whose growth can be limited by N, P, Fe, and/or light, a diatom class which can also be Si-limited, and a diazotroph phytoplankton class whose growth rates can be limited by P, Fe, and/or light levels. The model also includes a parameterization of calcification by phytoplankton and is described in detail by Moore et al. (Deep-Sea Res. II, 2002). The model reproduces the observed high nitrate, low chlorophyll (HNLC) conditions in the Southern Ocean, subarctic Northeast Pacific, and equatorial Pacific, and realistic global patterns of primary production, biogenic silica production, nitrogen fixation, particulate organic carbon export, calcium carbonate export, and surface chlorophyll concentrations. Phytoplankton cellular Fe/C ratios and surface layer dissolved iron concentrations are also in general agreement with the limited field data. Primary production, community structure, and the sinking carbon flux are quite sensitive to large variations in the atmospheric iron source, particularly in the HNLC regions, supporting the Iron Hypothesis of Martin (Paleoceanography 5 (1990) 1–13). Nitrogen fixation is also strongly influenced by atmospheric iron deposition. Nitrogen limits phytoplankton growth rates over less than half of the world ocean during summer months. Export of biogenic carbon is dominated by the sinking particulate flux, but detrainment and turbulent mixing account for 30% of global carbon export. Our results, in conjunction with other recent studies, suggest the familiar paradigm that nitrate inputs to the surface layer can be equated with particulate carbon export needs to be expanded to include multiple limiting nutrients and modes of export.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2001

An intermediate complexity marine ecosystem model for the global domain

J. Keith Moore; Scott C. Doney; Joanie Kleypas; David M. Glover; Inez Y. Fung

A new marine ecosystem model designed for the global domain is presented, and model output is compared with field data from nine different locations. Field data were collected as part of the international Joint Global Ocean Flux Study (JGOFS) program, and from historical time series stations. The field data include a wide variety of marine ecosystem types, including nitrogen- and iron-limited systems, and different physical environments from high latitudes to the mid-ocean gyres. Model output is generally in good agreement with field data from these diverse ecosystems. These results imply that the ecosystem model presented here can be reliably applied over the global domain. The model includes multiple potentially limiting nutrients that regulate phytoplankton growth rates. There are three phytoplankton classes, diatoms, diazotrophs, and a generic small phytoplankton class. Growth rates can be limited by available nitrogen, phosphorus, iron, and/or light levels. The diatoms can also be limited by silicon. The diazotrophs are capable of nitrogen fixation of N2 gas and cannot be nitrogen-limited. Calcification by phytoplankton is parameterized as a variable fraction of primary production by the small phytoplankton group. There is one zooplankton class that grazes the three phytoplankton groups and a large detrital pool. The large detrital pool sinks out of the mixed layer, while a smaller detrital pool, representing dissolved organic matter and very small particulates, does not sink. Remineralization of the detrital pools is parameterized with a temperature-dependent function. We explicitly model the dissolved iron cycle in marine surface waters including inputs of iron from subsurface sources and from atmospheric dust deposition.


Global Biogeochemical Cycles | 1997

The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide

James T. Randerson; Matthew V. Thompson; T. J. Conway; Inez Y. Fung; Christopher B. Field

We characterized decadal changes in the amplitude and shape of the seasonal cycle of atmospheric CO2 with three kinds of analysis. First, we calculated the trends in the seasonal cycle of measured atmospheric CO2 at observation stations in the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory network. Second, we assessed the impact of terrestrial ecosystems in various localities on the mean seasonal cycle of CO2 at observation stations using the Carnegie-Ames-Stanford Approach terrestrial biosphere model and the Goddard Institute for Space Studies (GISS) atmospheric tracer transport model. Third, we used the GISS tracer model to quantify the contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric CO2 for the period 1961–1990, specifically examining the effects of biomass burning, emissions from fossil fuel combustion, and regional increases in net primary production (NPP). Our analysis supports results from previous studies that indicate a significant positive increase in the amplitude of the seasonal cycle of CO2 at Arctic and subarctic observation stations. For stations north of 55°N the amplitude increased at a mean rate of 0.66% yr−1 from 1981 to 1995. From the analysis of ecosystem impacts on the mean seasonal cycle we find that tundra, boreal forest, and other northern ecosystems are responsible for most of the seasonal variation in CO2 at stations north of 55°N. The effects of tropical biomass burning on trends in the seasonal cycle are minimal at these stations, probably because of strong vertical convection in equatorial regions. From 1981 to 1990, fossil fuel emissions contributed a trend of 0.20% yr−1 to the seasonal cycle amplitude at Mauna Loa and less than 0.10% yr−1 at stations north of 55°N. To match the observed amplitude increases at Arctic and subarctic stations with NPP increases, we find that north of 30°N a 1.7 Pg C yr−1 terrestrial sink would be required. In contrast, over regions south of 30°N, even large NPP increases and accompanying terrestrial sinks would be insufficient to account for the increase in high-latitude amplitudes.


Science | 1996

Comparison of Radiative and Physiological Effects of Doubled Atmospheric CO2 on Climate

Piers J. Sellers; L. Bounoua; G. J. Collatz; David A. Randall; D. A. Dazlich; S.O. Los; Joseph A. Berry; Inez Y. Fung; C. J. Tucker; Christopher B. Field; Tommy G. Jensen

The physiological response of terrestrial vegetation when directly exposed to an increase in atmospheric carbon dioxide (CO2) concentration could result in warming over the continents in addition to that due to the conventional CO2 “greenhouse effect.” Results from a coupled biosphere-atmosphere model (SiB2-GCM) indicate that, for doubled CO2 conditions, evapotranspiration will drop and air temperature will increase over the tropical continents, amplifying the changes resulting from atmospheric radiative effects. The range of responses in surface air temperature and terrestrial carbon uptake due to increased CO2 are projected to be inversely related in the tropics year-round and inversely related during the growing season elsewhere.

Collaboration


Dive into the Inez Y. Fung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasmin G. John

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

P. J. Rayner

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjie Liu

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. S. Denning

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge