Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.S. Silitonga is active.

Publication


Featured researches published by A.S. Silitonga.


RSC Advances | 2016

A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine

A.H. Sebayang; H.H. Masjuki; Hwai Chyuan Ong; S. Dharma; A.S. Silitonga; T.M.I. Mahlia; H.B. Aditiya

The increasing consumption of fossil fuels has led to the development of alternative fuels for the future. Domestic biofuel production and the utilization of alternative fuels can decrease dependency on petroleum oil, reduce trade deficits, reduce air pollution and reduce carbon dioxide emission. Bioethanol is a renewable fuel produced by the fermentation of sugar which is derived from plants such as sugarcane or beet, maize, or cassava etc. However, bioethanol consumption in an engine is approximately 51% higher than gasoline since the energy per unit volume of ethanol is 34% lower than for gasoline. Bioethanol is an oxygenated fuel that contains 35% oxygen, which can reduce particulate matter and NOx emissions caused by combustion of the fuel. Therefore, bioethanol–gasoline blends can significantly reduce petroleum use and GHG emission. In addition, utilization of lignocellulosic materials in bioethanol production is the most viable pathway from an environmental point of view. This paper reviews the current status and technologies involved in bioethanol production and the properties and engine performance from various biomass feedstocks which are the recommended sustainable alternative fuel in the future.


Energy Sources Part A-recovery Utilization and Environmental Effects | 2017

A comparative study of biodiesel production methods for Reutealis trisperma biodiesel

A.S. Silitonga; T.M.I. Mahlia; Hwai Chyuan Ong; T.M.I Riayatsyah; F. Kusumo; Husin Ibrahim; S. Dharma; D Gumilang

ABSTRACT In this study, three types of biodiesel production methods are compared in order to maximize Reutealis trisperma biodiesel yields and it is found that the best method is esterification-neutralization-transesterification. The optimum methanol to oil molar ratio, catalyst concentration, reaction temperature, and reaction time are also determined from laboratory experiments and modeling using response surface methodology. There is excellent agreement between the predicted and experimental Reutealis trisperma biodiesel yields under optimum process conditions, with a value of 99.23 and 98.72%, respectively. The physicochemical properties of the Reutealis trisperma biodiesel also fulfill the fuel specifications of the ASTM D6751 standard.


Energy Sources Part A-recovery Utilization and Environmental Effects | 2017

Optimization of extraction of lipid from Isochrysis galbana microalgae species for biodiesel synthesis

A.S. Silitonga; H.H. Masjuki; Hwai Chyuan Ong; T.M.I. Mahlia; F. Kusumo

ABSTRACT Microalgae are promising alternative plant sources for biodiesel production because of the significant increase in lipid yield through heterotrophic cultivation and genetic engineering approaches. This study aims to evaluate the extraction and conversion of lipids from Isochrysis galbana. Response surface methodology (RSM) was used to optimize lipid extraction and thereby obtain high yields from the four microalgae species. The optimal lipid yields for Isochrysis galbana is 8.41 wt%. Moreover, the dominant lipid composition found from Isochrysis galbana extractions was palmitic acid (C16:0) at 22.3%. The high saturated acid of Isochrysis galbana contributed to the improved biodiesel properties because biodiesel quality is influenced by the lipid composition of microalgae species. The study employed the two-step esterification–transesterification process to convert the microalgae oil into biodiesel, glycerol, and water. The FAME content is 99.7% under the methanol to oil molar mass of 12:1, 1 wt%, 65°C, and 800 rpm. Furthermore, the main biodiesel properties, such as viscosity, higher heating value, and iodine value, were measured according to ASTM D6751 and EN 14124. Results show that microalgae oil can potentially be used as biofuel in future applications.


Energy Sources Part A-recovery Utilization and Environmental Effects | 2017

A comparative study of ultrasound and infrared transesterification of Sterculia foetida oil for biodiesel production

F. Kusumo; A.S. Silitonga; Hwai Chyuan Ong; H.H. Masjuki; T.M.I. Mahlia

ABSTRACT In this study, biodiesel production using ultrasound and infrared techniques is introduced. The ultrasound and infrared techniques are more efficient for biodiesel production since they improve the mass transfer between the immiscible reactants, increase chemical reactions, and decrease the reaction time and energy consumption. The effect of the reaction time on the acid value of the esterified Sterculia feotida oil is also investigated and it is found that the acid value is 0.76 and 0.85 mg KOH/g for the ultrasound and infrared technique, respectively, at a reaction time of 60 min. In addition, it is found that the biodiesel yield obtained from the ultrasound technique is higher (99.41%) compared to the infrared technique (98.55%) at a reaction time of 60 min. The KOH catalyst is analyzed for both of these techniques and it is found that the ultrasound technique gives faster absorbed reaction compared to the infrared technique. Hence, it can be concluded that the ultrasound and infrared transesterification techniques are promising techniques for biodiesel production.


Environmental Science and Pollution Research | 2018

A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends

Natalina Damanik; Hwai Chyuan Ong; Chong Wen Tong; T.M.I. Mahlia; A.S. Silitonga

Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.


Environmental Science and Pollution Research | 2017

Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine

A.S. Silitonga; Masjuki Haji Hassan; Hwai Chyuan Ong; F. Kusumo

The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805–0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259–2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.


Waste Management | 2018

Physicochemical property enhancement of biodiesel synthesis from hybrid feedstocks of waste cooking vegetable oil and Beauty leaf oil through optimized alkaline-catalysed transesterification

Jassinnee Milano; Hwai Chyuan Ong; H.H. Masjuki; A.S. Silitonga; F. Kusumo; S. Dharma; A.H. Sebayang; Mei Yee Cheah; Chin-Tsan Wang

Recycling waste cooking vegetable oils by reclaiming and using these oils as biodiesel feedstocks is one of the promising solutions to address global energy demands. However, producing these biodiesels poses a significant challenge because of their poor physicochemical properties due the high free fatty acid content and impurities present in the feedstock, which will reduce the biodiesel yields. Hence, this study implemented the following strategy in order to address this issue: (1) 70 vol% of waste cooking vegetable oil blended with 30 vol% of Calophyllum inophyllum oil named as WC70CI30 used to alter its properties, (2) a three-stage process (degumming, esterification, and transesterification) was conducted which reduces the free fatty acid content and presence of impurities, and (3) the transesterification process parameters (methanol/oil ratio, reaction temperature, reaction time, and catalyst concentration) were optimized using response surface methodology in order to increase the biodiesel conversion yield. The results show that the WC70CI30 biodiesel has favourable physicochemical properties, good cold flow properties, and high oxidation stability (22.4 h), which fulfil the fuel specifications stated in the ASTM D6751 and EN 14214 standards. It found that the WC70CI30 biodiesel has great potential as a diesel substitute without the need for antioxidants and pour point depressants.


Applied Mechanics and Materials | 2011

Energy Economical and Environmental Analysis of Industrial Boilers Using VSD

A.E. Atabani; R. Saidur; A.S. Silitonga; T.M.I. Mahlia

As a result of the successful implementation of the industrialization plan in 1985; Malaysia has changed from an agricultural economy into industrial based economy. The industrial sector represents the highest consuming sector across all other sectors and accounts for about 48% of all total energy demand. This paper is concerned with an energy saving, economic and environmental analysis of industrial boilers in Malaysia when using variable speed drives (VSD). The results obtained when reducing the speed of water pumps by 60% show that 4 GWh, 93.6% of energy, RM 863,375 and 2,160 ton of CO2 could be saved annually. These results represent high energy saving, environmental and economic benefits associated with this energy saving technology. ABBREVIATIONS


Renewable & Sustainable Energy Reviews | 2012

A comprehensive review on biodiesel as an alternative energy resource and its characteristics

A.E. Atabani; A.S. Silitonga; Irfan Anjum Badruddin; T.M.I. Mahlia; H.H. Masjuki; Saad Mekhilef


Renewable & Sustainable Energy Reviews | 2013

Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production

A.E. Atabani; A.S. Silitonga; Hwai Chyuan Ong; T.M.I. Mahlia; H.H. Masjuki; Irfan Anjum Badruddin; H. Fayaz

Collaboration


Dive into the A.S. Silitonga's collaboration.

Top Co-Authors

Avatar

T.M.I. Mahlia

Universiti Tenaga Nasional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Kusumo

Universiti Tenaga Nasional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge