A. S. Walker
John Radcliffe Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. S. Walker.
The New England Journal of Medicine | 2013
David W. Eyre; Madeleine Cule; Daniel J. Wilson; David Griffiths; Alison Vaughan; Lily O'Connor; Camilla L. C. Ip; Tanya Golubchik; Elizabeth M. Batty; John Finney; David H. Wyllie; Xavier Didelot; Paolo Piazza; Rory Bowden; Kate E. Dingle; Rosalind M. Harding; Derrick W. Crook; Mark H. Wilcox; Tim Peto; A. S. Walker
BACKGROUND It has been thought that Clostridium difficile infection is transmitted predominantly within health care settings. However, endemic spread has hampered identification of precise sources of infection and the assessment of the efficacy of interventions. METHODS From September 2007 through March 2011, we performed whole-genome sequencing on isolates obtained from all symptomatic patients with C. difficile infection identified in health care settings or in the community in Oxfordshire, United Kingdom. We compared single-nucleotide variants (SNVs) between the isolates, using C. difficile evolution rates estimated on the basis of the first and last samples obtained from each of 145 patients, with 0 to 2 SNVs expected between transmitted isolates obtained less than 124 days apart, on the basis of a 95% prediction interval. We then identified plausible epidemiologic links among genetically related cases from data on hospital admissions and community location. RESULTS Of 1250 C. difficile cases that were evaluated, 1223 (98%) were successfully sequenced. In a comparison of 957 samples obtained from April 2008 through March 2011 with those obtained from September 2007 onward, a total of 333 isolates (35%) had no more than 2 SNVs from at least 1 earlier case, and 428 isolates (45%) had more than 10 SNVs from all previous cases. Reductions in incidence over time were similar in the two groups, a finding that suggests an effect of interventions targeting the transition from exposure to disease. Of the 333 patients with no more than 2 SNVs (consistent with transmission), 126 patients (38%) had close hospital contact with another patient, and 120 patients (36%) had no hospital or community contact with another patient. Distinct subtypes of infection continued to be identified throughout the study, which suggests a considerable reservoir of C. difficile. CONCLUSIONS Over a 3-year period, 45% of C. difficile cases in Oxfordshire were genetically distinct from all previous cases. Genetically diverse sources, in addition to symptomatic patients, play a major part in C. difficile transmission. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).
BMJ Open | 2012
David W. Eyre; Tanya Golubchik; N C Gordon; Rory Bowden; Paolo Piazza; Elizabeth M. Batty; Camilla L. C. Ip; Daniel J. Wilson; Xavier Didelot; Lily O'Connor; Lay R; Dorothea Buck; Angela M. Kearns; Shaw A; John E. Paul; Mark H. Wilcox; Peter Donnelly; Tim Peto; A. S. Walker; Derrick W. Crook
Objectives To investigate the prospects of newly available benchtop sequencers to provide rapid whole-genome data in routine clinical practice. Next-generation sequencing has the potential to resolve uncertainties surrounding the route and timing of person-to-person transmission of healthcare-associated infection, which has been a major impediment to optimal management. Design The authors used Illumina MiSeq benchtop sequencing to undertake case studies investigating potential outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile. Setting Isolates were obtained from potential outbreaks associated with three UK hospitals. Participants Isolates were sequenced from a cluster of eight MRSA carriers and an associated bacteraemia case in an intensive care unit, another MRSA cluster of six cases and two clusters of C difficile. Additionally, all C difficile isolates from cases over 6 weeks in a single hospital were rapidly sequenced and compared with local strain sequences obtained in the preceding 3 years. Main outcome measure Whole-genome genetic relatedness of the isolates within each epidemiological cluster. Results Twenty-six MRSA and 15 C difficile isolates were successfully sequenced and analysed within 5 days of culture. Both MRSA clusters were identified as outbreaks, with most sequences in each cluster indistinguishable and all within three single nucleotide variants (SNVs). Epidemiologically unrelated isolates of the same spa-type were genetically distinct (≥21 SNVs). In both C difficile clusters, closely epidemiologically linked cases (in one case sharing the same strain type) were shown to be genetically distinct (≥144 SNVs). A reconstruction applying rapid sequencing in C difficile surveillance provided early outbreak detection and identified previously undetected probable community transmission. Conclusions This benchtop sequencing technology is widely generalisable to human bacterial pathogens. The findings provide several good examples of how rapid and precise sequencing could transform identification of transmission of healthcare-associated infection and therefore improve hospital infection control and patient outcomes in routine clinical practice.
Journal of Clinical Microbiology | 2014
N C Gordon; James Price; Kevin Cole; Richard G. Everitt; Marcus Morgan; John Finney; Angela M. Kearns; Bruno Pichon; Bernadette C. Young; Daniel J. Wilson; Martin Llewelyn; John Paul; Tim Peto; Derrick W. Crook; A. S. Walker; Tanya Golubchik
ABSTRACT Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organisms phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.
Journal of Antimicrobial Chemotherapy | 2013
Nicole Stoesser; Elizabeth M. Batty; David W. Eyre; Marcus Morgan; David H. Wyllie; C. Del Ojo Elias; James R. Johnson; A. S. Walker; Tim Peto; Derrick W. Crook
Objectives Whole-genome sequencing potentially represents a single, rapid and cost-effective approach to defining resistance mechanisms and predicting phenotype, and strain type, for both clinical and epidemiological purposes. This retrospective study aimed to determine the efficacy of whole genome-based antimicrobial resistance prediction in clinical isolates of Escherichia coli and Klebsiella pneumoniae. Methods Seventy-four E. coli and 69 K. pneumoniae bacteraemia isolates from Oxfordshire, UK, were sequenced (Illumina HiSeq 2000). Resistance phenotypes were predicted from genomic sequences using BLASTn-based comparisons of de novo-assembled contigs with a study database of >100 known resistance-associated loci, including plasmid-associated and chromosomal genes. Predictions were made for seven commonly used antimicrobials: amoxicillin, co-amoxiclav, ceftriaxone, ceftazidime, ciprofloxacin, gentamicin and meropenem. Comparisons were made with phenotypic results obtained in duplicate by broth dilution (BD Phoenix). Discrepancies, either between duplicate BD Phoenix results or between genotype and phenotype, were resolved with gradient diffusion analyses. Results A wide variety of antimicrobial resistance genes were identified, including blaCTX-M, blaLEN, blaOKP, blaOXA, blaSHV, blaTEM, aac(3′)-Ia, aac-(3′)-IId, aac-(3′)-IIe, aac(6′)-Ib-cr, aadA1a, aadA4, aadA5, aadA16, aph(6′)-Id, aph(3′)-Ia, qnrB and qnrS, as well as resistance-associated mutations in chromosomal gyrA and parC genes. The sensitivity of genome-based resistance prediction across all antibiotics for both species was 0.96 (95% CI: 0.94–0.98) and the specificity was 0.97 (95% CI: 0.95–0.98). Very major and major error rates were 1.2% and 2.1%, respectively. Conclusions Our method was as sensitive and specific as routinely deployed phenotypic methods. Validation against larger datasets and formal assessments of cost and turnaround time in a routine laboratory setting are warranted.
Nature Reviews Microbiology | 2016
Xavier Didelot; A. S. Walker; Tim Peto; Derrick W. Crook; Daniel J. Wilson
Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host — in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.
Clinical Infectious Diseases | 2013
Heidi S. M. Ammerlaan; Stéphan Juergen Harbarth; A G M Buiting; Derrick W. Crook; Fidelma Fitzpatrick; Håkan Hanberger; Loreen A. Herwaldt; P H J van Keulen; J. A. J. W. Kluytmans; Axel Kola; Ricardo de Souza Kuchenbecker; E Lingaas; Nico E. L. Meessen; M. Morris-Downes; J M Pottinger; Peter Rohner; R P dos Santos; Harald Seifert; Hilmar Wisplinghoff; S Ziesing; A. S. Walker; Marc J. M. Bonten
BACKGROUND It is unknown whether rising incidence rates of nosocomial bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) replace antibiotic-susceptible bacteria (ASB), leaving the total BSI rate unaffected. METHODS We investigated temporal trends in annual incidence densities (events per 100 000 patient-days) of nosocomial BSIs caused by methicillin-resistant Staphylococcus aureus (MRSA), ARB other than MRSA, and ASB in 7 ARB-endemic and 7 ARB-nonendemic hospitals between 1998 and 2007. RESULTS 33 130 nosocomial BSIs (14% caused by ARB) yielded 36 679 microorganisms. From 1998 to 2007, the MRSA incidence density increased from 0.2 to 0.7 (annual increase, 22%) in ARB-nonendemic hospitals, and from 3.1 to 11.7 (annual increase, 10%) in ARB-endemic hospitals (P = .2), increasing the incidence density difference between ARB-endemic and ARB-nonendemic hospitals from 2.9 to 11.0. The non-MRSA ARB incidence density increased from 2.8 to 4.1 (annual increase, 5%) in ARB-nonendemic hospitals, and from 1.5 to 17.4 (annual increase, 22%) in ARB-endemic hospitals (P < .001), changing the incidence density difference from -1.3 to 13.3. Trends in ASB incidence densities were similar in both groups (P = .7). With annual increases of 3.8% and 5.4% of all nosocomial BSIs in ARB-nonendemic and ARB-endemic hospitals, respectively (P < .001), the overall incidence density difference of 3.8 increased to 24.4. CONCLUSIONS Increased nosocomial BSI rates due to ARB occur in addition to infections caused by ASB, increasing the total burden of disease. Hospitals with high ARB infection rates in 2005 had an excess burden of BSI of 20.6 per 100 000 patient-days in a 10-year period, mainly caused by infections with ARB.
Genome Biology and Evolution | 2014
Kate E. Dingle; Briony Elliott; E.R. Robinson; D.T. Griffiths; David W. Eyre; Nicole Stoesser; Alison Vaughan; Tanya Golubchik; Warren N. Fawley; Mark H. Wilcox; Tim Peto; A. S. Walker; Thomas V. Riley; Derrick W. Crook; Xavier Didelot
The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19 kb pathogenicity locus (PaLoc). Stable integration of the PaLoc is suggested by its single chromosomal location and the clade specificity of its different genetic variants. However, the PaLoc is variably present, even among closely related strains, and thus resembles a mobile genetic element. Our aim was to explain these apparently conflicting observations by reconstructing the evolutionary history of the PaLoc. Phylogenetic analyses and annotation of the regions spanning the PaLoc were performed using C. difficile population-representative genomes chosen from a collection of 1,693 toxigenic (PaLoc present) and nontoxigenic (PaLoc absent) isolates. Comparison of the core genome and PaLoc phylogenies demonstrated an eventful evolutionary history, with distinct PaLoc variants acquired clade specifically after divergence. In particular, our data suggest a relatively recent PaLoc acquisition in clade 4. Exchanges and losses of the PaLoc DNA have also occurred, via long homologous recombination events involving flanking chromosomal sequences. The most recent loss event occurred ∼30 years ago within a clade 1 genotype. The genetic organization of the clade 3 PaLoc was unique in containing a stably integrated novel transposon (designated Tn6218), variants of which were found at multiple chromosomal locations. Tn6218 elements were Tn916-related but nonconjugative and occasionally contained genes conferring resistance to clinically relevant antibiotics. The evolutionary histories of two contrasting but clinically important genetic elements were thus characterized: the PaLoc, mobilized rarely via homologous recombination, and Tn6218, mobilized frequently through transposition.
Journal of Clinical Epidemiology | 2001
A Babiker; Tim Peto; Kholoud Porter; A. S. Walker; Jh Darbyshire
Age is a major determinant of mortality for many diseases including HIV infection, yet the effect of age is rarely studied directly. In this article, we review what is known about the effect of age at seroconversion on HIV disease progression and survival prior to the widespread use of HAART before describing appropriate methods for adjusting for background mortality in more detail. We then investigate the impact of HAART on the effect of age at seroconversion on mortality and consider the estimation of the age effect in seroprevalent cohorts with regard to lack of knowledge of the true age at infection. Finally, we discuss mechanisms by which age at seroconversion might impact on disease progression and death. Throughout, we use published results by the Collaborative Group on AIDS Incubation and HIV Survival (CGAIHS), and published results and data from the Concerted Action on SeroConversion to AIDS and Death in Europe (CASCADE) for illustration.
Journal of Clinical Microbiology | 2013
David W. Eyre; Warren N. Fawley; Emma L. Best; David Griffiths; Nicole Stoesser; Derrick W. Crook; Tim Peto; A. S. Walker; Mark H. Wilcox
ABSTRACT No study to date has compared multilocus variable-number tandem-repeat analysis (MLVA) and whole-genome sequencing (WGS) in an investigation of the transmission of Clostridium difficile infection. Isolates from 61 adults with ongoing and/or recurrent C. difficile infections and 17 asymptomatic carriage episodes in children (201 samples), as well as from 61 suspected outbreaks affecting 2 to 41 patients in 31 hospitals in the United Kingdom (300 samples), underwent 7-locus MLVA and WGS in parallel. When the first and last samples from the same individual taken for a median (interquartile range [IQR]) of 63 days (43 to 105 days) apart were compared, the estimated rates of the evolution of single nucleotide variants (SNVs), summed tandem-repeat differences (STRDs), and locus variants (LVs) were 0.79 (95% confidence interval [CI], 0.00 to 1.75), 1.63 (95% CI, 0.00 to 3.59), and 1.21 (95% CI, 0.00 to 2.67)/called genome/year, respectively. Differences of >2 SNVs and >10 STRDs have been used to exclude direct case-to-case transmission. With the first serial sample per individual being used to assess discriminatory power, across all pairs of samples sharing a PCR ribotype, 192/283 (68%) differed by >10 STRDs and 217/283 (77%) by >2 SNVs. Among all pairs of cases from the same suspected outbreak, 1,190/1,488 (80%) pairs had concordant results using >2 SNVs and >10 STRDs to exclude transmission. For the discordant pairs, 229 (15%) had ≥2 SNVs but ≤10 STRDs, and 69 (5%) had ≤2 SNVs but ≥10 STRDs. Discordant pairs had higher numbers of LVs than concordant pairs, supporting the more diverse measure in each type of discordant pair. Conclusions on whether the potential outbreaks were confirmed were concordant in 58/61 (95%) investigations. Overall findings using MLVA and WGS were very similar despite the fact that they analyzed different parts of the bacterial genome. With improvements in WGS technology, it is likely that MLVA locus data will be available from WGS in the near future.
Journal of Clinical Microbiology | 2014
Antonina A. Votintseva; Ruth R. Miller; Rowena Fung; Kyle Knox; Heather Godwin; Tim Peto; Derrick W. Crook; Rory Bowden; A. S. Walker
ABSTRACT Staphylococcus aureus is a commensal that can also cause invasive infection. Reports suggest that nasal cocolonization occurs rarely, but the resources required to sequence multiple colonies have precluded its large-scale investigation. A staged protocol was developed to maximize detection of mixed-spa-type colonization while minimizing laboratory resources using 3,197 S. aureus-positive samples from a longitudinal study of healthy individuals in Oxfordshire, United Kingdom. Initial typing of pooled material from each sample identified a single unambiguous strain in 89.6% of samples. Twelve single-colony isolates were typed from samples producing ambiguous initial results. All samples could be resolved into one or more spa types using the protocol. Cocolonization point prevalence was 3.4 to 5.8% over 24 months of follow-up in 360 recruitment-positives. However, 18% were cocolonized at least once, most only transiently. Cocolonizing spa types were completely unrelated in 56% of samples. Of 272 recruitment-positives returning ≥12 swabs, 166 (61%) carried S. aureus continuously but only 106 (39%) carried the same single spa type without any cocolonization; 31 (11%) switched spa type and 29 (11%) had transient cocarriage. S. aureus colonization is dynamic even in long-term carriers. New unrelated cocolonizing strains could increase invasive disease risk, and ongoing within-host evolution could increase invasive potential, possibilities that future studies should explore.