Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate E. Dingle is active.

Publication


Featured researches published by Kate E. Dingle.


Journal of Clinical Microbiology | 2001

Multilocus Sequence Typing System for Campylobacter jejuni

Kate E. Dingle; Frances M. Colles; D. R. A. Wareing; Roisin Ure; Andrew J. Fox; F. E. Bolton; H. J. Bootsma; R. J. L. Willems; Rachel Urwin; Martin C. J. Maiden

ABSTRACT The gram-negative bacterium Campylobacter jejuni has extensive reservoirs in livestock and the environment and is a frequent cause of gastroenteritis in humans. To date, the lack of (i) methods suitable for population genetic analysis and (ii) a universally accepted nomenclature has hindered studies of the epidemiology and population biology of this organism. Here, a multilocus sequence typing (MLST) system for this organism is described, which exploits the genetic variation present in seven housekeeping loci to determine the genetic relationships among isolates. The MLST system was established using 194 C. jejuni isolates of diverse origins, from humans, animals, and the environment. The allelic profiles, or sequence types (STs), of these isolates were deposited on the Internet (http://mlst.zoo.ox.ac.uk ), forming a virtual isolate collection which could be continually expanded. These data indicated that C. jejuni is genetically diverse, with a weakly clonal population structure, and that intra- and interspecies horizontal genetic exchange was common. Of the 155 STs observed, 51 (26% of the isolate collection) were unique, with the remainder of the collection being categorized into 11 lineages or clonal complexes of related STs with between 2 and 56 members. In some cases membership in a given lineage or ST correlated with the possession of a particular Penner HS serotype. Application of this approach to further isolate collections will enable an integrated global picture of C. jejuniepidemiology to be established and will permit more detailed studies of the population genetics of this organism.


The New England Journal of Medicine | 2013

Diverse sources of C. difficile infection identified on whole-genome sequencing.

David W. Eyre; Madeleine Cule; Daniel J. Wilson; David Griffiths; Alison Vaughan; Lily O'Connor; Camilla L. C. Ip; Tanya Golubchik; Elizabeth M. Batty; John Finney; David H. Wyllie; Xavier Didelot; Paolo Piazza; Rory Bowden; Kate E. Dingle; Rosalind M. Harding; Derrick W. Crook; Mark H. Wilcox; Tim Peto; A. S. Walker

BACKGROUND It has been thought that Clostridium difficile infection is transmitted predominantly within health care settings. However, endemic spread has hampered identification of precise sources of infection and the assessment of the efficacy of interventions. METHODS From September 2007 through March 2011, we performed whole-genome sequencing on isolates obtained from all symptomatic patients with C. difficile infection identified in health care settings or in the community in Oxfordshire, United Kingdom. We compared single-nucleotide variants (SNVs) between the isolates, using C. difficile evolution rates estimated on the basis of the first and last samples obtained from each of 145 patients, with 0 to 2 SNVs expected between transmitted isolates obtained less than 124 days apart, on the basis of a 95% prediction interval. We then identified plausible epidemiologic links among genetically related cases from data on hospital admissions and community location. RESULTS Of 1250 C. difficile cases that were evaluated, 1223 (98%) were successfully sequenced. In a comparison of 957 samples obtained from April 2008 through March 2011 with those obtained from September 2007 onward, a total of 333 isolates (35%) had no more than 2 SNVs from at least 1 earlier case, and 428 isolates (45%) had more than 10 SNVs from all previous cases. Reductions in incidence over time were similar in the two groups, a finding that suggests an effect of interventions targeting the transition from exposure to disease. Of the 333 patients with no more than 2 SNVs (consistent with transmission), 126 patients (38%) had close hospital contact with another patient, and 120 patients (36%) had no hospital or community contact with another patient. Distinct subtypes of infection continued to be identified throughout the study, which suggests a considerable reservoir of C. difficile. CONCLUSIONS Over a 3-year period, 45% of C. difficile cases in Oxfordshire were genetically distinct from all previous cases. Genetically diverse sources, in addition to symptomatic patients, play a major part in C. difficile transmission. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).


Journal of Clinical Microbiology | 2003

Comparative Genotyping of Campylobacter jejuni by Amplified Fragment Length Polymorphism, Multilocus Sequence Typing, and Short Repeat Sequencing: Strain Diversity, Host Range, and Recombination

Leo M. Schouls; Sanne Reulen; Birgitta Duim; Jaap A. Wagenaar; Rob J. L. Willems; Kate E. Dingle; Frances M. Colles; Jan D. A. van Embden

ABSTRACT Three molecular typing methods were used to study the relationships among 184 Campylobacter strains isolated from humans, cattle, and chickens. All strains were genotyped by amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and sequence analysis of a genomic region with short tandem repeats designated clustered regularly interspaced short palindromic repeats (CRISPRs). MLST and AFLP analysis yielded more than 100 different profiles and patterns, respectively. These multiple-locus typing methods resulted in similar genetic clustering, indicating that both are useful in disclosing genetic relationships between Campylobacter jejuni isolates. Group separation analysis of the AFLP analysis and MLST data revealed an unexpected association between cattle and human strains, suggesting a common source of infection. Analysis of the polymorphic CRISPR region carrying short repeats allowed about two-thirds of the typeable strains to be distinguished, similar to AFLP analysis and MLST. The three methods proved to be equally powerful in identifying strains from outbreaks of human campylobacteriosis. Analysis of the MLST data showed that intra- and interspecies recombination occurs frequently and that the role of recombination in sequence variation is 50 times greater than that of mutation. Examination of strains cultured from cecum swabs revealed that individual chickens harbored multiple Campylobacter strain types and that some genotypes were found in more than one chicken. We conclude that typing of Campylobacter strains is useful for identification of outbreaks but is probably not useful for source tracing and global epidemiology because of carriage of strains of multiple types and an extremely high diversity of strains in animals.


Emerging Infectious Diseases | 2002

Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation.

Kate E. Dingle; Frances M. Colles; Roisin Ure; Jaap A. Wagenaar; Birgitta Duim; Frederick J. Bolton; Andrew J. Fox; D. R. A. Wareing; Martin C. J. Maiden

A total of 814 isolates of the foodborne pathogen Campylobacter jejuni were characterized by multilocus sequence typing (MLST) and analysis of the variation of two cell-surface components: the heat-stable (HS) serotyping antigen and the flagella protein FlaA short variable region. We identified 379 combinations of the MLST loci (sequence types) and 215 combinations of the cell-surface components among these isolates, which had been obtained from human disease, animals, food, and the environment. Despite this diversity, 748 (92%) of the isolates belonged to one of 17 clonal complexes, 6 of which contained many (318, 63%) of the human disease isolates. Several clonal complexes exhibited associations with isolation source or particular cell-surface components; however, the latter were poorly predictive of clonal complex. These data demonstrate that the clonal complex, as defined by MLST, is an epidemiologically relevant unit for both long and short-term investigations of C. jejuni epidemiology.


Journal of Clinical Microbiology | 2010

Multilocus Sequence Typing of Clostridium difficile

David Griffiths; Warren N. Fawley; Melina Kachrimanidou; Rory Bowden; Derrick W. Crook; Rowena Fung; Tanya Golubchik; Rosalind M. Harding; Katie Jeffery; Keith A. Jolley; Richard Kirton; Tim Peto; Gareth Rees; Nicole Stoesser; Alison Vaughan; A. Sarah Walker; Bernadette C. Young; Mark H. Wilcox; Kate E. Dingle

ABSTRACT A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/ ) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control.


Journal of Clinical Microbiology | 2005

Sequence Typing and Comparison of Population Biology of Campylobacter coli and Campylobacter jejuni

Kate E. Dingle; Frances M. Colles; Daniel Falush; Martin C. J. Maiden

ABSTRACT A multilocus sequence typing (MLST) scheme that uses the same loci as a previously described system for Campylobacter jejuni was developed for Campylobacter coli. The C. coli-specific primers were validated with 53 isolates from humans, chickens, and pigs, together with 15 Penner serotype reference isolates. The nucleotide sequence of the flaA short variable region (SVR) was determined for each isolate. These sequence data were compared to equivalent information for 17 C. jejuni isolates representing the known genetic diversity of this species. C. coli and C. jejuni share approximately 86.5% identity at the nucleotide sequence level within the MLST loci. There is evidence of genetic exchange of the housekeeping genes between the two species, but at a very low rate; only one sequence type from each species showed evidence of imported DNA. The flaA gene was more variable and has been exchanged many times between the two species, making it an unreliable marker for species identification but useful for distinguishing closely related strains. All but 3 of 21 human C. coli clinical isolates were distinct, according to the combined MLST and SVR sequences. The use of a common MLST scheme allows direct comparisons of the population biology and molecular epidemiology of these two closely related human pathogens.


PLOS Medicine | 2012

Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing.

A. Sarah Walker; David W. Eyre; David H. Wyllie; Kate E. Dingle; Rosalind M. Harding; Lily O'Connor; David Griffiths; Ali Vaughan; John Finney; Mark H. Wilcox; Derrick W. Crook; Tim Peto

A population-based study in Oxfordshire (UK) hospitals by Sarah Walker and colleagues finds that in an endemic setting with good infection control, ward-based contact cannot account for most new cases of Clostridium difficile infection.


Clinical Infectious Diseases | 2013

Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection.

A. Sarah Walker; David W. Eyre; David H. Wyllie; Kate E. Dingle; David Griffiths; Brian Shine; Sarah Oakley; Lily O'Connor; John Finney; Alison Vaughan; Derrick W. Crook; Mark H. Wilcox; Tim Peto

Clostridium difficile genotype predicts 14-day mortality in 1893 enzyme immunoassay–positive/culture-positive adults. Excess mortality correlates with genotype-specific changes in biomarkers, strongly implicating inflammatory pathways as a major influence on poor outcome. Polymerase chain reaction ribotype 078/ST 11(clade 5) is associated with high mortality; ongoing surveillance remains essential.


Emerging Infectious Diseases | 2007

Host-associated Genetic Import in Campylobacter jejuni

Noel D. McCarthy; Frances M. Colles; Kate E. Dingle; Mary C. Bagnall; Georgina Manning; Martin C. J. Maiden; Daniel Falush

C. jejuni genomes have a host signature that enables attribution of isolates to animal sources.


Clinical Infectious Diseases | 2012

Predictors of first recurrence of Clostridium difficile infection: implications for initial management.

David W. Eyre; A. Sarah Walker; David H. Wyllie; Kate E. Dingle; David Griffiths; John Finney; Lily O'Connor; Alison Vaughan; Derrick W. Crook; Mark H. Wilcox; Tim Peto

Symptomatic recurrence of Clostridium difficile infection (CDI) occurs in approximately 20% of patients and is challenging to treat. Identifying those at high risk could allow targeted initial management and improve outcomes. Adult toxin enzyme immunoassay–positive CDI cases in a population of approximately 600 000 persons from September 2006 through December 2010 were combined with epidemiological/clinical data. The cumulative incidence of recurrence ≥14 days after the diagnosis and/or onset of first-ever CDI was estimated, treating death without recurrence as a competing risk, and predictors were identified from cause-specific proportional hazards regression models. A total of 1678 adults alive 14 days after their first CDI were included; median age was 77 years, and 1191 (78%) were inpatients. Of these, 363 (22%) experienced a recurrence ≥14 days after their first CDI, and 594 (35%) died without recurrence through March 2011. Recurrence risk was independently and significantly higher among patients admitted as emergencies, with previous gastrointestinal ward admission(s), last discharged 4–12 weeks before first diagnosis, and with CDI diagnosed at admission. Recurrence risk also increased with increasing age, previous total hours admitted, and C-reactive protein level at first CDI (all P < .05). The 4-month recurrence risk increased by approximately 5% (absolute) for every 1-point increase in a risk score based on these factors. Risk factors, including increasing age, initial disease severity, and hospital exposure, predict CDI recurrence and identify patients likely to benefit from enhanced initial CDI treatment.

Collaboration


Dive into the Kate E. Dingle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge