A. T. Bollinger
Brookhaven National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. T. Bollinger.
Nature | 2011
A. T. Bollinger; Guy Dubuis; Joonah Yoon; Davor Pavuna; James A. Misewich; I. Božović
High-temperature superconductivity in copper oxides arises when a parent insulator compound is doped beyond some critical concentration; what exactly happens at this superconductor–insulator transition is a key open question. The cleanest approach is to tune the carrier density using the electric field effect; for example, it was learned in this way that weak electron localization transforms superconducting SrTiO3 into a Fermi-glass insulator. But in the copper oxides this has been a long-standing technical challenge, because perfect ultrathin films and huge local fields (>109 V m−1) are needed. Recently, such fields have been obtained using electrolytes or ionic liquids in the electric double-layer transistor configuration. Here we report synthesis of epitaxial films of La2− xSrxCuO4 that are one unit cell thick, and fabrication of double-layer transistors. Very large fields and induced changes in surface carrier density enable shifts in the critical temperature by up to 30 K. Hundreds of resistance versus temperature and carrier density curves were recorded and shown to collapse onto a single function, as predicted for a two-dimensional superconductor–insulator transition. The observed critical resistance is precisely the quantum resistance for pairs, RQ = h/(2e) = 6.45 kΩ, suggestive of a phase transition driven by quantum phase fluctuations, and Cooper pair (de)localization.
Nature Materials | 2013
Darius Torchinsky; Fahad Mahmood; A. T. Bollinger; Ivan Božović; Nuh Gedik
Cuprate materials hosting high-temperature superconductivity (HTS) also exhibit various forms of charge and spin ordering whose significance is not fully understood. So far, static charge-density waves (CDWs) have been detected by diffraction probes only at particular doping levels or in an applied external field . However, dynamic CDWs may also be present more broadly and their detection, characterization and relationship with HTS remain open problems. Here we present a method based on ultrafast spectroscopy to detect the presence and measure the lifetimes of CDW fluctuations in cuprates. In an underdoped La(1.9)Sr(0.1)CuO4 film (T(c) = 26 K), we observe collective excitations of CDW that persist up to 100 K. This dynamic CDW fluctuates with a characteristic lifetime of 2 ps at T = 5 K that decreases to 0.5 ps at T = 100 K. In contrast, in an optimally doped La(1.84)Sr(0.16)CuO4 film (T(c) = 38.5 K), we detect no signatures of fluctuating CDWs at any temperature, favouring the competition scenario. This work forges a path for studying fluctuating order parameters in various superconductors and other materials.
Nature | 2016
I. Božović; X. He; J. Wu; A. T. Bollinger
The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen–Cooper–Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2−xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen–Cooper–Schrieffer description.
Nature Materials | 2013
J. Wu; Pelleg O; Gennady Logvenov; A. T. Bollinger; Sun Yj; Mihajlo Vanevic; Zoran Radovic; I. Božović
The recent discovery of superconductivity at the interface of two non-superconducting materials has received much attention. In cuprate bilayers, the critical temperature (Tc) can be significantly enhanced compared with single-phase samples. Several explanations have been proposed, invoking Sr interdiffusion, accumulation and depletion of mobile charge carriers, elongation of the copper-to-apical-oxygen bond length, or a beneficial crosstalk between a material with a high pairing energy and another with a large phase stiffness. From each of these models, one would predict Tc to depend strongly on the carrier density in the constituent materials. Here, we study combinatorial libraries of La(2-x)Sr(x)CuO4-La2CuO4 bilayer samples--an unprecedentedly large set of more than 800 different compositions. The doping level x spans a wide range, 0.15 < x < 0.47, and the measured Hall coefficient varies by one order of magnitude. Nevertheless, across the entire sample set, Tc stays essentially constant at about 40 K. We infer that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. This result poses a new challenge to theory--cuprate superconductors have not run out of surprises.
Review of Scientific Instruments | 2008
Jeffrey Clayhold; B. M. Kerns; M. D. Schroer; D. W. Rench; G. Logvenov; A. T. Bollinger; Ivan Bozovic
A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m3/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect.
Nature | 2017
J. Wu; A. T. Bollinger; X. He; I. Božović
The origin of high-temperature superconductivity in copper oxides and the nature of the ‘normal’ state above the critical temperature are widely debated. In underdoped copper oxides, this normal state hosts a pseudogap and other anomalous features; and in the overdoped materials, the standard Bardeen–Cooper–Schrieffer description fails, challenging the idea that the normal state is a simple Fermi liquid. To investigate these questions, we have studied the behaviour of single-crystal La2–xSrxCuO4 films through which an electrical current is being passed. Here we report that a spontaneous voltage develops across the sample, transverse (orthogonal) to the electrical current. The dependence of this voltage on probe current, temperature, in-plane device orientation and doping shows that this behaviour is intrinsic, substantial, robust and present over a broad range of temperature and doping. If the current direction is rotated in-plane by an angle ϕ, the transverse voltage oscillates as sin(2ϕ), breaking the four-fold rotational symmetry of the crystal. The amplitude of the oscillations is strongly peaked near the critical temperature for superconductivity and decreases with increasing doping. We find that these phenomena are manifestations of unexpected in-plane anisotropy in the electronic transport. The films are very thin and epitaxially constrained to be tetragonal (that is, with four-fold symmetry), so one expects a constant resistivity and zero transverse voltage, for every ϕ. The origin of this anisotropy is purely electronic—the so-called electronic nematicity. Unusually, the nematic director is not aligned with the crystal axes, unless a substantial orthorhombic distortion is imposed. The fact that this anisotropy occurs in a material that exhibits high-temperature superconductivity may not be a coincidence.
Proceedings of the National Academy of Sciences of the United States of America | 2016
J. Wu; A. T. Bollinger; Yujie Sun; Ivan Božović
Significance In cuprates, when doping is reduced superconductivity weakens and eventually disappears. The sample becomes “insulating” insofar that resistivity increases as the temperature is lowered, but the conductivity remains high, so the nature of this strange insulating state has been a puzzle. Here, we study the superconductor–insulator transition, improving the control of the doping level by 2 orders of magnitude and the sensitivity in probing transport fluctuations by 3 orders of magnitude. Our data reveal that at the lowest temperatures superconductivity competes with a charge-glass state. We propose that the latter is a glassy version of a charge density wave, and that it originates from strong localization due to charge–lattice coupling. Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ∼ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.
Scientific Reports | 2016
Guy Dubuis; Yizhak Yacoby; Hua Zhou; Xi He; A. T. Bollinger; Davor Pavuna; Ron Pindak; Ivan Božović
We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms.
APL Materials | 2015
X. Leng; Juan Pereiro; J. Strle; A. T. Bollinger; I. Božović
We have grown epitaxial WO3 films on various single-crystal substrates using radio frequency magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on Y AlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. The dependence of the growth modes and the surface morphology on the lattice mismatch are discussed.
Philosophical Transactions of the Royal Society A | 2012
Juan Pereiro; A. T. Bollinger; G. Logvenov; A. Gozar; C. Panagopoulos; I. Božović
A brief overview is given of the studies of high-temperature interface superconductivity based on atomic-layer-by-layer molecular beam epitaxy (ALL-MBE). A number of difficult materials science and physics questions have been tackled, frequently at the expense of some technical tour de force, and sometimes even by introducing new techniques. ALL-MBE is especially suitable to address questions related to surface and interface physics. Using this technique, it has been demonstrated that high-temperature superconductivity can occur in a single copper oxide layer—the thinnest superconductor known. It has been shown that interface superconductivity in cuprates is a genuine electronic effect—it arises from charge transfer (electron depletion and accumulation) across the interface driven by the difference in chemical potentials rather than from cation diffusion and mixing. We have also understood the nature of the superconductor–insulator phase transition as a function of doping. However, a few important questions, such as the mechanism of interfacial enhancement of the critical temperature, are still outstanding.