Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. V. Maximov is active.

Publication


Featured researches published by A. V. Maximov.


Physics of Plasmas | 2015

Direct-drive inertial confinement fusion: A review

R. S. Craxton; Karen S. Anderson; T. R. Boehly; V.N. Goncharov; D. R. Harding; J. P. Knauer; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; J. F. Myatt; Andrew J. Schmitt; J. D. Sethian; R. W. Short; S. Skupsky; W. Theobald; W. L. Kruer; Kokichi Tanaka; R. Betti; T.J.B. Collins; J. A. Delettrez; S. X. Hu; J.A. Marozas; A. V. Maximov; D.T. Michel; P. B. Radha; S. P. Regan; T. C. Sangster; W. Seka; A. A. Solodov; J. M. Soures

The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.


Physics of Plasmas | 2014

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa)

V.N. Goncharov; T. C. Sangster; R. Betti; T. R. Boehly; M.J. Bonino; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; R.K. Follett; C.J. Forrest; D. H. Froula; V. Yu. Glebov; D. R. Harding; R.J. Henchen; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; T. Z. Kosc; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov; R.L. McCrory; P.W. McKenty; D. D. Meyerhofer; D.T. Michel

Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ∼1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics th...


Physics of Plasmas | 2007

High-Intensity Laser Interactions with Mass-Limited Solid Targets and Implications for Fast-Ignition Experiments on OMEGA EP

J. F. Myatt; W. Theobald; J. A. Delettrez; C. Stoeckl; M. Storm; T. C. Sangster; A. V. Maximov; R. W. Short

The modeling of petawatt laser-generated hot electrons in mass-limited solid-foil-target interactions at “relativistic” laser intensities is presented using copper targets and parameters motivated by recent experiments at the Rutherford Appleton Laboratory Petawatt and 100-TW facilities [Theobald et al., Phys. Plasmas 13, 043102 (2006)]. Electron refluxing allows a unique determination of the laser-electron conversion efficiency and a test with simulations. Good agreement between experiments and simulations is found for conversion efficiencies of 10%.


Physics of Plasmas | 2012

Crossed-beam energy transfer in direct-drive implosions

Igor V. Igumenshchev; W. Seka; D. H. Edgell; D.T. Michel; D. H. Froula; V.N. Goncharov; R. S. Craxton; L. Divol; R. Epstein; R. K. Follett; J. H. Kelly; T. Z. Kosc; A. V. Maximov; R.L. McCrory; D. D. Meyerhofer; P. Michel; J.F. Myatt; T. C. Sangster; A. Shvydky; S. Skupsky; C. Stoeckl

Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.


Physics of Plasmas | 2010

Crossed-Beam Energy Transfer in Implosion Experiments on OMEGA

Igor V. Igumenshchev; D. H. Edgell; V.N. Goncharov; J. A. Delettrez; A. V. Maximov; J. F. Myatt; W. Seka; A. Shvydky; S. Skupsky; C. Stoeckl

Radiative hydrodynamic simulations of implosion experiments on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)] show that energy transfer between crossing laser beams can reduce laser absorption by 10%–20%. A new quantitative model for the crossed-beam energy transfer has been developed, allowing one to simulate the coupling of multiple beams in the expanding corona of implosion targets. Scattered-light and bang-time measurements show good agreement with predictions of this model when nonlocal heat transport is employed. The laser absorption can be increased by narrowing laser beams and/or employing two-color light, which both reduce the crossed-beam energy transfer.


Physics of Plasmas | 2009

Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments

W. Seka; D. H. Edgell; J. F. Myatt; A. V. Maximov; R. W. Short; V.N. Goncharov; H. A. Baldis

The two-plasmon-decay (TPD) instability in direct-drive irradiation OMEGA [J. M. Soures, R. L. McCrory, C. P. Verdon, et al., Phys. Plasmas 3, 2108 (1996)] experiments is seen in the half-integer harmonic emission. Experimental time-resolved ω/2 and 3ω/2 spectra indicate that the linear theory for the absolute TPD instability reasonably predicts TPD thresholds. The plasma wave spectra do not, however, agree at all with the predictions of the linear theory. This is most likely a consequence of the nonlinear evolution of this instability once it is above threshold. This is demonstrated with spectral data obtained from spherical implosion experiments as well as planar target experiments. In the latter, Thomson scattering shows the importance of the Landau cutoff. For the TPD instability, the Landau cutoff is found to be respected in all spherical and planar target experiments. In addition, the maximum plasma wave amplitudes appear to occur near the Landau cutoff.


Physics of Plasmas | 2008

Time-Resolved Absorption in Cryogenic and Room-Temperature Direct-Drive Implosions

W. Seka; D. H. Edgell; J. P. Knauer; J. F. Myatt; A. V. Maximov; R. W. Short; T. C. Sangster; C. Stoeckl; R. E. Bahr; R. S. Craxton; J. A. Delettrez; V.N. Goncharov; Igor V. Igumenshchev; D. Shvarts

Time-dependent and time-integrated absorption fractions are inferred from scattered-light measurements in room-temperature and cryogenic direct-drive-implosion experiments on OMEGA. The measurements agree reasonably well with hydrodynamic simulations that include nonlocal electron-heat transport. Discrepancies in the time-resolved scattered-light spectra between simulations and experiments remain for complex laser pulse shapes, indicating beam-to-beam energy transfer and commensurate coupling losses. Time-resolved scattered-light spectra near ω∕2 and 3ω∕2 as well as time-resolved hard-x-ray measurements indicate the presence of a strongly driven two-plasmon-decay (TPD) instability at high intensities that may influence the observed laser light absorption. Experiments indicate that energetic electron production due to the TPD instability can be mitigated with high-Z-doped plastic shells.


Physics of Plasmas | 2013

Improving cryogenic deuterium–tritium implosion performance on OMEGA

T. C. Sangster; V.N. Goncharov; R. Betti; P. B. Radha; T. R. Boehly; D. T. Casey; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; C.J. Forrest; J. A. Frenje; D. H. Froula; M. Gatu-Johnson; Y. Yu. Glebov; D. R. Harding; M. Hohenberger; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; C. Kingsley; T. Z. Kosc; J. P. Knauer; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov

A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant per...


Physics of Plasmas | 2013

Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping

J.F. Myatt; H. X. Vu; D. F. DuBois; D. A. Russell; J. Zhang; R. W. Short; A. V. Maximov

The extended Zakharov model of the two-plasmon decay instability in an inhomogeneous plasma [D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001)] is further generalized to include the evolution of the electron distribution function in the quasi-linear approximation [cf., e.g., K. Y. Sanbonmatsu et al. Phys. Plasmas 7, 2824 (2000); D. A. Russell et al., paper presented at the Workshop on SRS/SBS Saturation, Wente Vineyards, Livermore, CA, 2–5 April 2002]. This makes it possible to investigate anomalous absorption of laser light and hot electron production due to the two-plasmon decay instability of multiple overlapping electromagnetic waves. Scalings of hot-electron production in the (stationary) nonlinearly saturated regime relevant to recent experiments [B. Yaakobi et al., Phys. Plasmas 19, 012704 (2012); D. H. Froula et al., Phys. Rev. Lett. 108, 165003 (2012)] have been obtained. They indicate a sensitivity to ion-acoustic wave (IAW) damping and to the collisional absorption of Langmuir waves. Such a sensitivity might be exploited in inertial confinement fusion target design by the use of mid-Z ablators.


Plasma Physics and Controlled Fusion | 2002

Laser–plasma interaction studies in the context of megajoule lasers for inertial fusion

D. Pesme; S H ller; J. F. Myatt; C Riconda; A. V. Maximov; V.T. Tikhonchuk; C. Labaune; J. Fuchs; S. Depierreux; H. A. Baldis

Laser–plasma interaction (LPI) physics is one the major issues for the realization of inertial fusion. Parametric instabilities may be driven by the incident laser beams during their propagation in the underdense plasma surrounding the fusion capsule. These instabilities may result in various effects detrimental to a good energy transfer from the laser beams to the target: the backscattering of the incident beams, the generation of energetic electrons which might preheat the fusion fuel, and the spoiling of the laser beam alignment. The control of the linear growth of these instabilities, together with the understanding of their nonlinear saturation mechanisms are therefore of fundamental importance for laser fusion. During the past few years, a series of new concepts have emerged, deeply modifying our approach to LPI physics. In particular, LPI experiments are now carried out with laser beams which are optically smoothed by means of random phase plates. Such beams are characterized inside the plasma by randomly distributed intensity maxima. Filamentation instabilities may locally increase the laser intensity maxima and deplete the electron density, leading to an intricate coupling between various nonlinear processes. One of the most striking features of this intricate coupling is the resulting ability of the plasma to induce additional temporal and spatial incoherence to the laser beams during their propagation. The increased incoherence may in turn reduce the level of backscattering instabilities.

Collaboration


Dive into the A. V. Maximov's collaboration.

Top Co-Authors

Avatar

D. H. Edgell

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

R. W. Short

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. F. Myatt

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

W. Seka

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. H. Froula

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge