Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron C. Hartmann is active.

Publication


Featured researches published by Aaron C. Hartmann.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth

Emily M. Trentacoste; Roshan P. Shrestha; Sarah R. Smith; Corine Glé; Aaron C. Hartmann; Mark Hildebrand; William H. Gerwick

Significance As global CO2 levels rise and fossil fuel abundance decreases, the development of alternative fuels becomes increasingly imperative. Biologically derived fuels, and specifically those from microalgae, are promising sources, but improvements throughout the production process are required to reduce cost. Increasing lipid yields in microalgae without compromising growth has great potential to improve economic feasibility. We report that disrupting lipid catabolism is a practical approach to increase lipid yields in microalgae without affecting growth or biomass. We developed transgenic strains through targeted metabolic engineering that show increased lipid accumulation, biomass, and lipid yields. The target enzyme’s ubiquity suggests that this approach can be applied broadly to improve the economic feasibility of algal biofuels in other groups of microalgae. Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana. Antisense-expressing knockdown strains 1A6 and 1B1 exhibited wild-type–like growth and increased lipid content under both continuous light and alternating light/dark conditions. Strains 1A6 and 1B1, respectively, contained 2.4- and 3.3-fold higher lipid content than wild-type during exponential growth, and 4.1- and 3.2-fold higher lipid content than wild-type after 40 h of silicon starvation. Analyses of fatty acids, lipid classes, and membrane stability in the transgenic strains suggest a role for this enzyme in membrane lipid turnover and lipid homeostasis. These results demonstrate that targeted metabolic manipulations can be used to increase lipid accumulation in eukaryotic microalgae without compromising growth.


PLOS ONE | 2012

Historical Temperature Variability Affects Coral Response to Heat Stress

Jessica E. Carilli; Simon D. Donner; Aaron C. Hartmann

Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions.


Environmental Science & Technology | 2010

Mercury speciation in marine sediments under sulfate-limited conditions.

Seunghee Han; Priya Narasingarao; Anna Obraztsova; Joris M. Gieskes; Aaron C. Hartmann; Bradley M. Tebo; Eric E. Allen; Dimitri D. Deheyn

Sediment profiles of total mercury (Hg) and monomethylmercury (MMHg) were determined from a 30-m drill hole located north of Venice, Italy. While the sediment profile of total Hg concentration was fairly constant between 1 and 10 m, that of the MMHg concentration showed an unexpected peak at a depth of 6 m. Due to the limited sulfate content (<1 mM) at the depth of 6 m, we hypothesized that the methylation of inorganic Hg(II) at this depth is associated with the syntrophic processes occurring between methanogens and sulfidogens. To test this hypothesis, anoxic sediment slurries were prepared using buried Venice Lagoon sediments amended with HgCl(2), and we monitored MMHg concentration in sediment slurries over time under two geochemical conditions: high sulfate (1-16 mM) and limited sulfate concentrations (<100 microM). After day 52 and onward from the addition of inorganic Hg(II), the MMHg concentrations were higher in sulfate-limited slurries compared to high sulfate slurries, along with methane production in both slurries. On the basis of these results, we argue that active methylation of inorganic Hg(II) occurs under sulfate-limited conditions possibly by syntrophic processes occurring between methanogens and sulfidogens. The environmental significance of syntrophic Hg(II) methylation should be further studied.


Ecology | 2013

Large birth size does not reduce negative latent effects of harsh environments across life stages in two coral species

Aaron C. Hartmann; Kristen L. Marhaver; Valérie F. Chamberland; Stuart A. Sandin; Mark J. A. Vermeij

When juveniles must tolerate harsh environments early in life, the disproportionate success of certain phenotypes across multiple early life stages will dramatically influence adult community composition and dynamics. In many species, large offspring have a higher tolerance for stressful environments than do smaller conspecifics (parental effects). However, we have a poor understanding of whether the benefits of increased parental investment carry over after juveniles escape harsh environments or progress to later life stages (latent effects). To investigate whether parental effects and latent effects interactively influence offspring success, we determined the degree to which latent effects of harsh abiotic conditions are mediated by offspring size in two stony coral species. Larvae of both species were sorted by size class and exposed to relatively high-temperature or low-salinity conditions. Survivorship was quantified for six days in these stressful environments, after which surviving larvae were placed in ambient conditions and evaluated for their ability to settle and metamorphose. We subsequently assessed long-term post-settlement survival of one species in its natural environment. Following existing theory, we expected that, within and between species, larger offspring would have a higher tolerance for harsh environmental conditions than smaller offspring. We found that large size did enhance offspring performance in each species. However, large offspring size within a species did not reduce the proportional, negative latent effects of harsh larval environments. Furthermore, the coral species that produces larger offspring was more, not less, prone to negative latent effects. We conclude that, within species, large offspring size does not increase resistance to latent effects. Comparing between species, we conclude that larger offspring size does not inherently confer greater robustness, and we instead propose that other life history characteristics such as larval duration better predict the tolerance of offspring to harsh and variable abiotic conditions. Additionally, when considering how stressful environments influence offspring performance, studies that only evaluate direct effects may miss crucial downstream (latent) effects on juveniles that have significant consequences for long-term population dynamics.


Proceedings of the Royal Society B: Biological Sciences | 2016

Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence

Robert A. Quinn; Mark J. A. Vermeij; Aaron C. Hartmann; Ines Galtier d'Auriac; Sean Benler; Andreas F. Haas; Steven D. Quistad; Yan Wei Lim; Mark Little; Stuart A. Sandin; Jennifer E. Smith; Pieter C. Dorrestein; Forest Rohwer

Holobionts are assemblages of microbial symbionts and their macrobial host. As extant representatives of some of the oldest macro-organisms, corals and algae are important for understanding how holobionts develop and interact with one another. Using untargeted metabolomics, we show that non-self interactions altered the coral metabolome more than self-interactions (i.e. different or same genus, respectively). Platelet activating factor (PAF) and Lyso-PAF, central inflammatory modulators in mammals, were major lipid components of the coral holobionts. When corals were damaged during competitive interactions with algae, PAF increased along with expression of the gene encoding Lyso-PAF acetyltransferase; the protein responsible for converting Lyso-PAF to PAF. This shows that self and non-self recognition among some of the oldest extant holobionts involve bioactive lipids identical to those in highly derived taxa like humans. This further strengthens the hypothesis that major players of the immune response evolved during the pre-Cambrian.


Coral Reefs | 2010

Stable isotopic records of bleaching and endolithic algae blooms in the skeleton of the boulder forming coral Montastraea faveolata

Aaron C. Hartmann; Jessica E. Carilli; Richard D. Norris; Christopher D. Charles; Dimitri D. Deheyn

Within boulder forming corals, fixation of dissolved inorganic carbon is performed by symbiotic dinoflagellates within the coral tissue and, to a lesser extent, endolithic algae within the coral skeleton. Endolithic algae produce distinctive green bands in the coral skeleton, and their origin may be related to periods of coral bleaching due to complete loss of dinoflagellate symbionts or “paling” in which symbiont populations are patchily reduced in coral tissue. Stable carbon isotopes were analyzed in coral skeletons across a known bleaching event and 12 blooms of endolithic algae to determine whether either of these types of changes in photosynthesis had a clear isotopic signature. Stable carbon isotopes tended to be enriched in the coral skeleton during the initiation of endolith blooms, consistent with enhanced photosynthesis by endoliths. In contrast, there were no consistent δ13C patterns directly associated with bleaching, suggesting that there is no unique isotopic signature of bleaching. On the other hand, isotopic values after bleaching were lighter 92% of the time when compared to the bleaching interval. This marked drop in skeletal δ13C may reflect increased kinetic fractionation and slow symbiont recolonization for several years after bleaching.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Meta-mass shift chemical profiling of metabolomes from coral reefs

Aaron C. Hartmann; Daniel Petras; Robert A. Quinn; Ivan Protsyuk; Frederick I. Archer; Emma Ransome; Gareth J. Williams; Barbara A. Bailey; Mark J. A. Vermeij; Theodore Alexandrov; Pieter C. Dorrestein; Forest Rohwer

Significance Coral reef taxa produce a diverse array of molecules, some of which are important pharmaceuticals. To better understand how molecular diversity is generated on coral reefs, tandem mass spectrometry datasets of coral metabolomes were analyzed using a novel approach called meta-mass shift chemical (MeMSChem) profiling. MeMSChem profiling uses the mass differences between molecules in molecular networks to determine how molecules are related. Interestingly, the same molecules gain and lose chemical groups in different ways depending on the taxa it came from, offering a partial explanation for high molecular diversity on coral reefs. Untargeted metabolomics of environmental samples routinely detects thousands of small molecules, the vast majority of which cannot be identified. Meta-mass shift chemical (MeMSChem) profiling was developed to identify mass differences between related molecules using molecular networks. This approach illuminates metabolome-wide relationships between molecules and the putative chemical groups that differentiate them (e.g., H2, CH2, COCH2). MeMSChem profiling was used to analyze a publicly available metabolomic dataset of coral, algal, and fungal mat holobionts (i.e., the host and its associated microbes and viruses) sampled from some of Earth’s most remote and pristine coral reefs. Each type of holobiont had distinct mass shift profiles, even when the analysis was restricted to molecules found in all samples. This result suggests that holobionts modify the same molecules in different ways and offers insights into the generation of molecular diversity. Three genera of stony corals had distinct patterns of molecular relatedness despite their high degree of taxonomic relatedness. MeMSChem profiles also partially differentiated between individuals, suggesting that every coral reef holobiont is a potential source of novel chemical diversity.


Current Biology | 2017

The Paradox of Environmental Symbiont Acquisition in Obligate Mutualisms

Aaron C. Hartmann; Andrew Baird; Nancy Knowlton; Danwei Huang

Mutually beneficial interactions between species (mutualisms) shaped the evolution of eukaryotes and remain critical to the survival of species globally [1, 2]. Theory predicts that hosts should pass mutualist symbionts to their offspring (vertical transmission) [3-8]. However, offspring acquire symbionts from the environment in a surprising number of species (horizontal acquisition) [9-12]. A classic example of this paradox is the reef-building corals, in which 71% of species horizontally acquire algal endosymbionts [9]. An untested hypothesis explaining this paradox suggests that horizontal acquisition allows offspring to avoid symbiont-induced harm early in life. We reconstructed the evolution of symbiont transmission across 252 coral species and detected evolutionary transitions consistent with costs of vertical transmission among broadcast spawners, whose eggs tend to be positively buoyant and aggregate at the sea surface. Broadcasters with vertical transmission produce eggs with traits that favor reduced buoyancy (less wax ester lipid) and rapid development to the swimming stage (small egg size), both of which decrease the amount of time offspring spend at the sea surface. Wax ester provisioning decreased after vertically transmitting species evolved brooding from broadcasting, indicating that reduced buoyancy evolves only when offspring bear symbionts. We conclude that horizontal acquisition protects offspring from damage caused by high light and temperatures near the sea surface while providing benefits from enhanced fertilization and outcrossing. These findings help explain why modes of symbiont transmission and reproduction are strongly associated in corals and highlight benefits of delaying mutualist partnerships, offering an additional hypothesis for the pervasiveness of this theoretically paradoxical strategy.


Proceedings of the Royal Society B: Biological Sciences | 2017

Costs and benefits of maternally inherited algal symbionts in coral larvae

Valérie F. Chamberland; Kelly R. W. Latijnhouwers; Jef Huisman; Aaron C. Hartmann; Mark J. A. Vermeij

Many marine invertebrates provide their offspring with symbionts. Yet the consequences of maternally inherited symbionts on larval fitness remain largely unexplored. In the stony coral Favia fragum (Esper 1797), mothers produce larvae with highly variable amounts of endosymbiotic algae, and we examined the implications of this variation in symbiont density on the performance of F. fragum larvae under different environmental scenarios. High symbiont densities prolonged the period that larvae actively swam and searched for suitable settlement habitats. Thermal stress reduced survival and settlement success in F. fragum larvae, whereby larvae with high symbiont densities suffered more from non-lethal stress and were five times more likely to die compared with larvae with low symbiont densities. These results show that maternally inherited algal symbionts can be either beneficial or harmful to coral larvae depending on the environmental conditions at hand, and suggest that F. fragum mothers use a bet-hedging strategy to minimize risks associated with spatio-temporal variability in their offsprings environment.


Science | 2012

Conservation Concerns in the Deep

Aaron C. Hartmann; Lisa A. Levin

In their Perspective “A dive to challenger deep” (20 April, p. [301][1]), R. A. Lutz and P. G. Falkowski highlight the exciting advancements in engineering that allowed director James Cameron to dive to Challenger Deep, the deepest point on Earth. As Lutz and Falkowski point out, ever-improving

Collaboration


Dive into the Aaron C. Hartmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Forest Rohwer

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica E. Carilli

University of Massachusetts Boston

View shared research outputs
Researchain Logo
Decentralizing Knowledge