Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron D. Tward is active.

Publication


Featured researches published by Aaron D. Tward.


Science | 2011

The Mutational Landscape of Head and Neck Squamous Cell Carcinoma

Nicolas Stransky; Ann Marie Egloff; Aaron D. Tward; Aleksandar D. Kostic; Kristian Cibulskis; Andrey Sivachenko; Gregory V. Kryukov; Michael S. Lawrence; Carrie Sougnez; Aaron McKenna; Erica Shefler; Alex H. Ramos; Petar Stojanov; Scott L. Carter; Douglas Voet; Maria L. Cortes; Daniel Auclair; Michael F. Berger; Gordon Saksena; Candace Guiducci; Robert C. Onofrio; Melissa Parkin; Marjorie Romkes; Joel L. Weissfeld; Raja R. Seethala; Lin Wang; Claudia Rangel-Escareño; Juan Carlos Fernández-López; Alfredo Hidalgo-Miranda; Jorge Melendez-Zajgla

The mutational profile of head and neck cancer is complex and may pose challenges to the development of targeted therapies. Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papillomavirus was detectable by sequencing DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), our analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.


Circulation | 2002

Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice

Aaron D. Tward; Yu-Rong Xia; Xuping Wang; Yi-Shou Shi; Christina Park; Lawrence W. Castellani; Aldons J. Lusis; Diana M. Shih

Background—Serum paraoxonase (PON1), an enzyme carried on HDL, inhibits LDL oxidation, and in human population studies, low PON1 activity is associated with atherosclerosis. In addition, PON1 knockout mice are more susceptible to lipoprotein oxidation and atherosclerosis. To evaluate whether PON1 protects against atherosclerosis and lipid oxidation in a dose-dependent manner, we generated and studied human PON1 transgenic mice. Methods and Results—Human PON1 transgenic mice were produced by using bacterial artificial chromosome genomic clones. The mice had 2- to 4-fold increased plasma PON1 levels, but plasma cholesterol levels were unchanged. Atherosclerotic lesions were significantly reduced in the transgenic mice when both dietary and apoE-null mouse models were used. HDL isolated from the transgenic mice also protected against LDL oxidation more effectively. Conclusions—Our results indicate that PON1 protects against atherosclerosis in a dose-dependent manner and suggest that it may be a potential target for developing therapeutic agents for the treatment of cardiovascular disease.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation

Julie B. Sneddon; Hanson H. Zhen; Kelli Montgomery; Matt van de Rijn; Aaron D. Tward; Robert B. West; Hayes B. Gladstone; Howard Y. Chang; Greg S. Morganroth; Anthony E. Oro; Patrick O. Brown

Although tissue microenvironments play critical roles in epithelial development and tumorigenesis, the factors mediating these effects are poorly understood. In this work, we used a genomic approach to identify factors produced by cells in the microenvironment of basal cell carcinoma (BCC) of the skin, one of the most common human cancers. The global gene expression programs of stromal cell cultures derived from human BCCs showed consistent, systematic differences from those derived from nontumor skin. The gene most consistently expressed at a higher level in BCC tumor stromal cells compared with those from nontumor skin was GREMLIN 1, which encodes a secreted antagonist of the bone morphogenetic protein (BMP) pathway. BMPs and their antagonists are known to play a crucial role in stem and progenitor cell biology as regulators of the balance between expansion and differentiation. Consistent with the hypothesis that BMP antagonists might have a similar role in cancer, we found GREMLIN 1 expression in the stroma of human BCC tumors but not in normal skin in vivo. Furthermore, BMP 2 and 4 are expressed by BCC cells. Ex vivo, BMP inhibits, and Gremlin 1 promotes, proliferation of cultured BCC cells. We further found that GREMLIN 1 is expressed by stromal cells in many carcinomas but not in the corresponding normal tissue counterparts that we examined. Our data suggest that BMP antagonists may be important constituents of tumor stroma, providing a favorable microenvironment for cancer cell survival and expansion in many cancers.


Pharmacogenetics | 2000

Catalytic efficiency determines the in-vivo efficacy of PON1 for detoxifying organophosphorus compounds

Wan-Fen Li; Lucio G. Costa; Rebecca J. Richter; Tamara Hagen; Diana M. Shih; Aaron D. Tward; Aldon J. Lusis; Clement E. Furlong

Human paraoxonase (PON1) is a polymorphic, high-density lipoprotein (HDL)-associated esterase that hydrolyzes the toxic metabolites of several organophosphorus (OP) insecticides and nerve agents. The activity polymorphism is determined by a Gln/Arg (Q/R) substitution at position 192. Injection of purified PON1 protects animals from OP poisoning. In the present study, we investigated the in-vivo function of PON1 for detoxifying organophosphorus insecticides in PON1-knockout mice that were challenged via dermal exposure with diazoxon, diazinon and paraoxon. PON1-knockout mice were extremely sensitive to diazoxon. Doses (2 and 4 mg/kg) that caused no cholinesterase (ChE) inhibition in wild-type mice were lethal to the knockout mice, which also showed slightly increased sensitivity to the parent compound diazinon. Surprisingly, these knockout mice did not show increased sensitivity to paraoxon. In-vitro assays indicated that the PON1R192 isoform hydrolyzed diazoxon less rapidly than did the PON1Q192 isoform. In-vivo analysis, where PON1-knockout mice received the same amount of either PON1(192) isoform via intraperitoneal (i.p.) injection 4 h prior to exposure, showed that both isoforms provided a similar degree of protection against diazoxon, while PON1R192 conferred better protection against chlorpyrifos-oxon than PON1Q192. Injection of purified rabbit PON1 or either human PON1(192) isoform did not protect PONI-knockout mice from paraoxon toxicity, nor did over-expression of the human PON1R192 transgene in wild-type mice. Kinetic analysis of the two human PON1(192) isoforms revealed that the catalytic efficiency (Vmax/Km) determines the in-vivo efficacy of PON1 for organophosphorus detoxication. The results indicate that PON1 plays a major role in the detoxication of diazoxon and chlorpyrifos oxon but not paraoxon.


Nature Medicine | 2007

Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC

Andrei Goga; Dun Yang; Aaron D. Tward; David O. Morgan; J. Michael Bishop

Tumor cells have a dysregulated cell cycle that may render their proliferation especially sensitive to the inhibition of cyclin-dependent kinases (CDKs), important regulators of cell cycle progression. We examined the effects of CDK1 inhibition in the context of different oncogenic signals. Cells transformed with MYC, but not cells transformed by a panel of other activated oncogenes, rapidly underwent apoptosis when treated with small-molecule CDK1 inhibitors. The inhibitor of apoptosis protein BIRC5 (survivin), a known CDK1 target, is required for the survival of cells overexpressing MYC. Inhibition of CDK1 rapidly downregulates survivin expression and induces MYC-dependent apoptosis. CDK1 inhibitor treatment of MYC-dependent mouse lymphoma and hepatoblastoma tumors decreased tumor growth and prolonged their survival. As there are no effective small-molecule inhibitors that selectively target the MYC pathway, we propose that CDK1 inhibition might therefore be useful in the treatment of human malignancies that overexpress MYC.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Distinct pathways of genomic progression to benign and malignant tumors of the liver.

Aaron D. Tward; Kirk D. Jones; Stephen R. Yant; Siu Tim Cheung; Sheung Tat Fan; Xin Chen; Mark A. Kay; Rong A. Wang; J. Michael Bishop

We used several of the genetic lesions commonly associated with human liver tumors to reconstruct genetic progression to hepatocellular carcinoma and adenoma in mouse models. We initiated tumorigenesis with a transgene of the protooncogene MET or by hydrodynamic transfection of MET in combination with other genes into the livers of adult animals. Hepatocellular carcinoma in both instances arose from cooperation between MET and constitutively active versions of β-catenin. In contrast, adenomas were produced by cooperation between MET and defective signaling through the transcription factor HNF1α. Prompted by these findings, we uncovered a coincidence between activation of the protein-tyrosine kinase encoded by MET and activating mutations of β-catenin in a subset of human hepatocellular carcinomas. Inactivation of MET transgenes led to regression of hepatocellular carcinomas despite the persistence of activated β-catenin. The tumors eventually recurred in the absence of MET expression, however, presumably after the occurrence of one or more events that cooperated with activated β-catenin in lieu of MET. These results offer insight into hepatic tumorigenesis, provide mouse models that should be useful in the further study of hepatic tumorigenesis and for preclinical testing, and identify a subset of human hepatocellular carcinomas that may be susceptible to combination therapy directed against Met and the Wnt signaling pathway.


Oncogene | 2006

Hepatocellular carcinoma in Txnip-deficient mice.

S S Sheth; J S Bodnar; A Ghazalpour; C K Thipphavong; Shuichi Tsutsumi; Aaron D. Tward; P Demant; Tatsuhiko Kodama; Hiroyuki Aburatani; Aldons J. Lusis

The molecular pathogenesis and the genetic aberrations that lead to the progression of hepatocellular carcinoma (HCC) are largely unknown. Here, we demonstrate that the thioredoxin interacting protein (Txnip) gene is a candidate tumor suppressor gene in vivo. We previously showed that the recombinant inbred congenic strain HcB-19 has a spontaneous mutation of the Txnip gene, and we now show that the strain has dramatically increased incidence of HCC, and that the HCC cosegregates with the Txnip mutation. Approximately 40% of the Txnip-deficient mice developed hepatic tumors with an increased prevalence in male mice. Visible tumors develop as early as 8 months of age. Histological analysis confirmed the morphology of HCC in the Txnip-deficient mice. Molecular markers of HCC, α-fetoprotein and p53, were increased in tumors of Txnip-deficient mice. The upregulation of p53 preceded tumor development; however, bromodeoxyuridine (BrdU) labeling of normal hepatic tissue of Txnip-deficient mice did not reveal increased cell proliferation. Finally, microarray analyses of tumor, non-tumor adjacent, and normal tissue of Txnip-deficient mice highlighted the genetic differences leading to the predisposition and onset of HCC. Our findings suggest that Txnip deficiency is sufficient to initiate HCC and suggest novel mechanisms in hepatocarcinogenesis.


Journal of Immunology | 2003

Systemic Rather Than Local Heme Oxygenase-1 Overexpression Improves Cardiac Allograft Outcomes in a New Transgenic Mouse

Jesus A. Araujo; Lingzhong Meng; Aaron D. Tward; Wayne W. Hancock; Yuan Zhai; Annie Lee; Kazunobu Ishikawa; Suhasini Iyer; Roland Buelow; Ronald W. Busuttil; Diana M. Shih; Aldons J. Lusis; Jerzy W. Kupiec-Weglinski

Heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme catabolism, exhibits potent antioxidant and anti-inflammatory properties. We developed HO-1 transgenic (Tg) mice using a rat HO-1 genomic transgene under the control of the endogenous promoter. Transgene expression was demonstrated by RT-PCR in all studied tissues, and a modest HO-1 overexpression was documented by Western, ELISA, and enzyme activity assays. To assess the effect of local vs systemic HO-1 in the acute rejection response, we used Tg mice as organ donors or recipients of MHC-incompatible heart grafts. In the local HO-1 overexpression model, Tg allografts survived 10.5 ± 0.7 days (n = 10), compared with 6.5 ± 0.4 days (n = 6) for wild-type donor controls (p = 0.0001). In the systemic HO-1 overexpression model, Tg recipients maintained allografts for 26.8 ± 3.4 days (n = 10), compared with 6.3 ± 0.1 days (n = 12) in wild-type controls (p = 0.00009). Inhibition of HO activity by treatment with tin protoporphyrin blunted survival advantage in Tg mice and resulted in acute graft rejection (n = 3). Increased carboxyhemoglobin levels were consistently noted in Tg mice. Comparisons of grafts at day 4 indicated that HO-1 overexpression was inversely associated with vasculitis/inflammatory cell infiltrate in both models. Hearts transplanted into Tg recipients showed decreased CD4+ lymphocyte infiltration and diminished immune activation, as judged by CD25 expression. Thus, although local and systemic HO-1 overexpression improved allograft outcomes, systemic HO-1 led to a more robust protection and resulted in a significant blunting of host immune activation. This Tg mouse provides a valuable tool to study mechanisms by which HO-1 exerts beneficial effects in organ transplantation.


Nature Medicine | 2016

Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer

Roman Camarda; Alicia Y. Zhou; Rebecca A. Kohnz; Sanjeev Balakrishnan; Celine Mahieu; Brittany Anderton; Henok Eyob; Shingo Kajimura; Aaron D. Tward; Gregor Krings; Daniel K. Nomura; Andrei Goga

Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor–, progesterone receptor– or human epidermal growth factor 2 receptor–positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient–derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer.


Cancer | 2013

High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma.

Edmund A. Mroz; Aaron D. Tward; Curtis R. Pickering; Jeffrey N. Myers; Robert L. Ferris; James W. Rocco

Although the presence of genetic heterogeneity within the tumors of individual patients is established, it is unclear whether greater heterogeneity predicts a worse outcome. A quantitative measure of genetic heterogeneity based on next‐generation sequencing (NGS) data, mutant‐allele tumor heterogeneity (MATH), was previously developed and applied to a data set on head and neck squamous cell carcinoma (HNSCC). Whether this measure correlates with clinical outcome was not previously assessed.

Collaboration


Dive into the Aaron D. Tward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana M. Shih

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Goga

University of California

View shared research outputs
Top Co-Authors

Avatar

Curtis R. Pickering

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge