Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron T. Fafarman is active.

Publication


Featured researches published by Aaron T. Fafarman.


Nano Letters | 2012

Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics

Ji-Hyuk Choi; Aaron T. Fafarman; Soong Ju Oh; Dong-Kyun Ko; David K. Kim; Benjamin T. Diroll; Shin Muramoto; J. Greg Gillen; Christopher B. Murray; Cherie R. Kagan

We report bandlike transport in solution-deposited, CdSe QD thin-films with room temperature field-effect mobilities for electrons of 27 cm(2)/(V s). A concomitant shift and broadening in the QD solid optical absorption compared to that of dispersed samples is consistent with electron delocalization and measured electron mobilities. Annealing indium contacts allows for thermal diffusion and doping of the QD thin-films, shifting the Fermi energy, filling traps, and providing access to the bands. Temperature-dependent measurements show bandlike transport to 220 K on a SiO(2) gate insulator that is extended to 140 K by reducing the interface trap density using an Al(2)O(3)/SiO(2) gate insulator. The use of compact ligands and doping provides a pathway to high performance, solution-deposited QD electronics and optoelectronics.


Journal of the American Chemical Society | 2011

Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids

Aaron T. Fafarman; Weon-kyu Koh; Benjamin T. Diroll; David K. Kim; Dong-Kyun Ko; Soong Ju Oh; Xingchen Ye; Vicky V. T. Doan-Nguyen; Michael R. Crump; Danielle Reifsnyder; Christopher B. Murray; Cherie R. Kagan

Ammonium thiocyanate (NH(4)SCN) is introduced to exchange the long, insulating ligands used in colloidal nanocrystal (NC) synthesis. The short, air-stable, environmentally benign thiocyanate ligand electrostatically stabilizes a variety of semiconductor and metallic NCs in polar solvents, allowing solution-based deposition of NCs into thin-film NC solids. NH(4)SCN is also effective in replacing ligands on NCs after their assembly into the solid state. The spectroscopic properties of this ligand provide unprecedented insight into the chemical and electronic nature of the surface of the NCs. Spectra indicate that the thiocyanate binds to metal sites on the NC surface and is sensitive to atom type and NC surface charge. The short, thiocyanate ligand gives rise to significantly enhanced electronic coupling between NCs as evidenced by large bathochromic shifts in the absorption spectra of CdSe and CdTe NC thin films and by conductivities as high as (2 ± 0.7) × 10(3) Ω(-1) cm(-1) for Au NC thin films deposited from solution. NH(4)SCN treatment of PbTe NC films increases the conductivity by 10(13), allowing the first Hall measurements of nonsintered NC solids, with Hall effect mobilities of 2.8 ± 0.7 cm(2)/(V·s). Thiocyanate-capped CdSe NC thin films form photodetectors exhibiting sensitive photoconductivity of 10(-5) Ω(-1) cm(-1) under 30 mW/cm(2) of 488 nm illumination with I(photo)/I(dark) > 10(3) and form n-channel thin-film transistors with electron mobilities of 1.5 ± 0.7 cm(2)/(V·s), a current modulation of >10(6), and a subthreshold swing of 0.73 V/decade.


ACS Nano | 2012

Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle–Nanophosphor Separation

Marjan Saboktakin; Xingchen Ye; Soong Ju Oh; Sung-Hoon Hong; Aaron T. Fafarman; Uday K. Chettiar; Nader Engheta; Christopher B. Murray; Cherie R. Kagan

We have demonstrated amplification of luminescence in upconversion nanophosphors (UCNPs) of hexagonal phase NaYF(4) (β-NaYF(4)) doped with the lanthanide dopants Yb(3+), Er(3+) or Yb(3+), Tm(3+) by close proximity to metal nanoparticles (NPs). We present a configuration in which close-packed monolayers of UCNPs are separated from a dense multilayer of metal NPs (Au or Ag) by a nanometer-scale oxide grown by atomic layer deposition. Luminescence enhancements were found to be dependent on the thickness of the oxide spacer layer and the type of metal NP with enhancements of up to 5.2-fold proximal to Au NPs and of up to 45-fold proximal to Ag NPs. Concomitant shortening of the UCNP luminescence decay time and rise time is indicative of the enhancement of the UCNP luminescence induced by resonant plasmonic coupling and nonresonant near-field enhancement from the metal NP layer, respectively.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Potent inhibition of scrapie prion replication in cultured cells by bis-acridines

Barnaby C. H. May; Aaron T. Fafarman; Septima B. Hong; Michael J. Rogers; Leslie W. Deady; Stanley B. Prusiner; Fred E. Cohen

Prion diseases are characterized by an accumulation of PrPSc, a misfolded isoform of the normal cellular prion protein, PrPC. We previously reported the bioactivity of acridine-based compounds against PrPSc replication in scrapie-infected neuroblastoma cells and now report the improved potency of bis-acridine compounds. Bis-acridines are characterized by a dimeric motif, comprising two acridine heterocycles tethered by a linker. A library of bis-(6-chloro-2-methoxy-acridin-9-yl) and bis-(7-chloro-2-methoxy-benzo[b][1,5]naphthyridin-10-yl) analogs was synthesized to explore the effect of structurally diverse linkers on PrPSc replication in scrapie-infected neuroblastoma cells. Structure–activity analysis revealed that linker length and structure are important determinants for inhibition of prion replication in cultured scrapied cells. Three bis-acridine analogs, (6-chloro-2-methoxy-acridin-9-yl)-(3-{4-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-piperazin-1-yl}-propyl)-amine, N,N′-bis-(6-chloro-2-methoxy-acridin-9-yl)-1,8-diamino-3,6-dioxaoctane, and (1-{[4-(6-chloro-2-methoxy-acridin-9-ylamino)-butyl]-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-carbamoyl}-ethyl)-carbamic acid tert-butyl ester, showed half-maximal inhibition of PrPSc formation at 40, 25, and 30 nM, respectively, and were not cytotoxic to uninfected neuroblastoma cells at concentrations of 500 nM. Our data suggest that bis-acridine analogs may provide a potent alternative to the acridine-based compound quinacrine, which is currently under clinical evaluation for the treatment of prion disease.


Nano Letters | 2011

Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate.

Weon-kyu Koh; Sangameshwar Rao Saudari; Aaron T. Fafarman; Cherie R. Kagan; Christopher B. Murray

We report the use of thiocyanate as a ligand for lead sulfide (PbS) nanocubes for high-performance, thin-film electronics. PbS nanocubes, self-assembled into thin films and capped with the thiocyanate, exhibit ambipolar characteristics in field-effect transistors. The nearly balanced, high mobilities for electrons and holes enable the fabrication of CMOS-like inverters with promising gains of ∼22 from a single semiconductor material. The mild chemical treatment and low-temperature processing conditions are compatible with plastic substrates, allowing the realization of flexible, nonsintered quantum dot circuits.


Journal of the American Chemical Society | 2010

Decomposition of Vibrational Shifts of Nitriles into Electrostatic and Hydrogen-Bonding Effects

Aaron T. Fafarman; Paul A. Sigala; Daniel Herschlag; Steven G. Boxer

Infrared (IR) band shifts of isolated vibrational transitions can serve as quantitative and directional probes of local electrostatic fields, due to the vibrational Stark effect. However, departures from the Stark model can arise when the probe participates in specific, chemical interactions, such as direct hydrogen bonding. We present a method to identify and correct for these departures based on comparison of (13)C NMR chemical shifts and IR frequencies each calibrated in turn by a solvatochromic model. We demonstrate how the tandem use of these experimental observables can be applied to a thiocyanate-modified protein, ketosteroid isomerase, and show, by comparison to structural models, that changes in electrostatic field can be measured within the complex protein environment even in the background of direct hydrogen bonding to the probe.


Nano Letters | 2016

High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide

Subham Dastidar; David A. Egger; Liang Z. Tan; Samuel B. Cromer; Andrew D. Dillon; Shi Liu; Leeor Kronik; Andrew M. Rappe; Aaron T. Fafarman

Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.


Journal of Physical Chemistry B | 2010

Nitrile Bonds as Infrared Probes of Electrostatics in Ribonuclease S

Aaron T. Fafarman; Steven G. Boxer

Three different nitrile-containing amino acids, p-cyanophenylalanine, m-cyanophenylalanine, and S-cyanohomocysteine, have been introduced near the active site of the semisynthetic enzyme ribonuclease S (RNase S) to serve as probes of electrostatic fields. Vibrational Stark spectra, measured directly on the probe-modified proteins, confirm the predominance of the linear Stark tuning rate in describing the sensitivity of the nitrile stretch to external electric fields, a necessary property for interpreting observed frequency shifts as a quantitative measure of local electric fields that can be compared with simulations. The X-ray structures of these nitrile-modified RNase variants and enzymatic assays demonstrate minimal perturbation to the structure and function, respectively, by the probes and provide a context for understanding the influence of the environment on the nitrile stretching frequency. We examine the ability of simulation techniques to recapitulate the spectroscopic properties of these nitriles as a means to directly test a computational electrostatic model for proteins, specifically that in the ubiquitous Amber-99 force field. Although qualitative agreement between theory and experiment is observed for the largest shifts, substantial discrepancies are observed in some cases, highlighting the ongoing need for experimental metrics to inform the development of theoretical models of electrostatic fields in proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase

Aaron T. Fafarman; Paul A. Sigala; Jason P. Schwans; Timothy D. Fenn; Daniel Herschlag; Steven G. Boxer

Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pKa prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pKa near 7 was included. UV-absorbance and 13C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.


ACS Nano | 2013

In situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air.

Ji-Hyuk Choi; Soong Ju Oh; Yuming Lai; David K. Kim; Tianshuo Zhao; Aaron T. Fafarman; Benjamin T. Diroll; Christopher B. Murray; Cherie R. Kagan

Colloidal semiconductor nanocrystal (NC) thin films have been integrated in light-emitting diodes, solar cells, field-effect transistors (FETs), and flexible, electronic circuits. However, NC devices are typically fabricated and operated in an inert environment since the reactive surface and high surface-to-volume ratio of NC materials render them sensitive to oxygen, water, and many solvents. This sensitivity has limited device scaling and large-scale device integration achievable by conventional fabrication technologies, which generally require ambient air and wet-chemical processing. Here, we present a simple, effective route to reverse the detrimental effects of chemical and environmental exposure, by incorporating, in situ, a chemical agent, namely, indium metal, which is thermally triggered to diffuse and repair the damage. Taking advantage of the recovery process, CdSe NC FETs are processed in air, patterned using the solvents of lithography, and packaged by atomic layer deposition to form large-area and flexible high-performance NC devices that operate stably in air.

Collaboration


Dive into the Aaron T. Fafarman's collaboration.

Top Co-Authors

Avatar

Cherie R. Kagan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xingchen Ye

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David K. Kim

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge