Aarti R. Shah
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aarti R. Shah.
Annals of Neurology | 2006
Anne M. Fagan; Mark A. Mintun; Robert H. Mach; Sang‐Yoon Lee; Carmen S. Dence; Aarti R. Shah; Gina N. LaRossa; Michael L. Spinner; William E. Klunk; Chester A. Mathis; Steven T. DeKosky; John C. Morris; David M. Holtzman
Amyloid‐β42 (Aβ42) appears central to Alzheimers disease (AD) pathogenesis and is a major component of amyloid plaques. Mean cerebrospinal fluid (CSF) Aβ42 is decreased in dementia of the Alzheimers type. This decrease may reflect plaques acting as an Aβ42 “sink,” hindering transport of soluble Aβ42 between brain and CSF. We investigated this hypothesis.
Journal of Clinical Investigation | 1998
Yu Cheng; Mohanish Deshmukh; Anselm D'Costa; Joseph A. Demaro; Jeffrey M. Gidday; Aarti R. Shah; Yuling Sun; Mark F. Jacquin; Eugene M. Johnson; David M. Holtzman
Programmed cell death (apoptosis) is a normal process in the developing nervous system. Recent data suggest that certain features seen in the process of programmed cell death may be favored in the developing versus the adult brain in response to different brain injuries. In a well characterized model of neonatal hypoxia-ischemia, we demonstrate marked but delayed cell death in which there is prominent DNA laddering, TUNEL-labeling, and nuclei with condensed chromatin. Caspase activation, which is required in many cases of apoptotic cell death, also followed a delayed time course after hypoxia-ischemia. Administration of boc-aspartyl(OMe)-fluoromethylketone, a pan-caspase inhibitor, was significantly neuroprotective when given by intracerebroventricular injection 3 h after cerebral hypoxia-ischemia. In addition, systemic injections of boc-aspartyl(OMe)-fluoromethylketone also given in a delayed fashion, resulted in significant neuroprotection. These findings suggest that caspase inhibitors may be able to provide benefit over a prolonged therapeutic window after hypoxic-ischemic events in the developing brain, a major contributor to static encephalopathy and cerebral palsy.
Neuroscience Letters | 1994
Jeffrey M. Gidday; Jill C. Fitzgibbons; Aarti R. Shah; T. S. Park
Very recent studies in adult gerbils and rats have shown that exposure to sublethal ischemia can confer neuroprotection from subsequent lethal ischemic episodes. To determine if a similar phenomenon can be elicited during the perinatal period, we have developed a preconditioning regimen that involves exposure to normothermic hypoxia (8% oxygen) 24 h prior to hypoxia-ischemia in the well-established post-natal-day 7 rat pup model [20]. Significant infarction, manifested as a 34 +/- 4% reduction in cerebral hemispheric weight ipsilateral to the carotid ligation, was noted in control animals (n = 24) one week after hypoxia-ischemia, whereas littermates preconditioned with 3 h hypoxia (n = 29) showed no evidence of hemispheric necrosis. Lack of injury in the latter animals was confirmed at the cellular level by histopathologic analyses of Nissl-stained coronal sections. Thus, pre-exposure to hypoxia induces endogenous adaptive mechanisms that can protect the perinatal brain from hypoxic-ischemic injury.
Annals of Neurology | 2009
Anne M. Fagan; Denise Head; Aarti R. Shah; Daniel S. Marcus; Mark A. Mintun; John C. Morris; David M. Holtzman
For therapies for Alzheimers disease (AD) to have the greatest impact, it will likely be necessary to treat individuals in the “preclinical” (presymptomatic) stage. Fluid and neuroimaging measures are being explored as possible biomarkers of AD pathology that could aid in identifying individuals in this stage to target them for clinical trials and to direct and monitor therapy. The objective of this study was to determine whether cerebrospinal fluid (CSF) biomarkers for AD suggest the presence of brain damage in the preclinical stage of AD.
Lancet Neurology | 2012
Eric M. Reiman; Yakeel T. Quiroz; Adam S. Fleisher; Kewei Chen; Carlos Velez-Pardo; Marlene Jimenez-Del-Rio; Anne M. Fagan; Aarti R. Shah; Sergio Alvarez; Andres Arbelaez; Margarita Giraldo; Natalia Acosta-Baena; Reisa A. Sperling; Brad Dickerson; Chantal E. Stern; Victoria Tirado; Claudia Muñoz; Rebecca Reiman; Matthew J. Huentelman; Gene E. Alexander; Jessica B. Langbaum; Kenneth S. Kosik; Pierre N. Tariot; Francisco Lopera
BACKGROUND We have previously characterised functional brain abnormalities in young adults at genetic risk for late-onset Alzheimers disease. To gain further knowledge on the preclinical phase of Alzheimers disease, we sought to characterise structural and functional MRI, CSF, and plasma biomarkers in a cohort of young adults carrying a high-penetrance autosomal dominant mutation that causes early-onset Alzheimers disease. METHODS Between January and August, 2010, 18-26-year-old presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the Colombian Alzheimers Prevention Initiative Registry in Medellín Antioquia, Colombia, had structural MRI, functional MRI during associative memory encoding and novel viewing and control tasks, and cognitive assessments. Consenting participants also had lumbar punctures and venepunctures. Outcome measures were task-dependent hippocampal or parahippocampal activations and precuneus or posterior cingulate deactivations, regional grey matter reductions, CSF Aβ(1-42), total tau and phospho-tau(181) concentrations, and plasma Aβ(1-42) concentrations and Aβ(1-42):Aβ(1-40) ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to Alzheimers disease. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. FINDINGS 44 participants were included: 20 PSEN1 E280A mutation carriers and 24 non-carriers. The carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) ɛ4 carriers. Compared with non-carriers, carriers had greater right hippocampal and parahippocampal activation (p=0·001 and p<0·014, respectively, after correction for multiple comparisons), less precuneus and posterior cingulate deactivation (all p<0·010 after correction), and less grey matter in several parietal regions (all p<0·002 uncorrected and corrected p=0·009 in the right parietal search region). In the 20 participants (ten PSEN1 E280A mutation carriers and ten non-carriers) who had lumbar punctures and venepunctures, mutation carriers had higher CSF Aβ(1-42) concentrations (p=0·008) and plasma Aβ(1-42) concentrations (p=0·01) than non-carriers. INTERPRETATION Young adults at genetic risk for autosomal dominant Alzheimers disease have functional and structural MRI findings and CSF and plasma biomarker findings consistent with Aβ(1-42) overproduction. Although the extent to which the underlying brain changes are either neurodegenerative or developmental remain to be determined, this study shows the earliest known biomarker changes in cognitively normal people at genetic risk for autosomal dominant Alzheimers disease. FUNDING Banner Alzheimers Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Boston University Department of Psychology, Colciencias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, and the State of Arizona.
Embo Molecular Medicine | 2009
Anne M. Fagan; Mark A. Mintun; Aarti R. Shah; Patricia Aldea; Catherine M. Roe; Robert H. Mach; Daniel S. Marcus; John C. Morris; David M. Holtzman
Alzheimers disease (AD) pathology is estimated to develop many years before detectable cognitive decline. Fluid and imaging biomarkers may identify people in early symptomatic and even preclinical stages, possibly when potential treatments can best preserve cognitive function. We previously reported that cerebrospinal fluid (CSF) levels of amyloid‐β42 (Aβ42) serve as an excellent marker for brain amyloid as detected by the amyloid tracer, Pittsburgh compound B (PIB). Using data from 189 cognitively normal participants, we now report a positive linear relationship between CSF tau/ptau181 (primary constituents of neurofibrillary tangles) with the amount of cortical amyloid. We observe a strong inverse relationship of cortical PIB binding with CSF Aβ42 but not for plasma Aβ species. Some individuals have low CSF Aβ42 but no cortical PIB binding. Together, these data suggest that changes in brain Aβ42 metabolism and amyloid formation are early pathogenic events in AD, and that significant disruptions in CSF tau metabolism likely occur after Aβ42 initially aggregates and increases as amyloid accumulates. These findings have important implications for preclinical AD diagnosis and treatment.
Journal of Cerebral Blood Flow and Metabolism | 1999
Jeffrey M. Gidday; Aarti R. Shah; Raymond G. Maceren; Qiong Wang; Dale A. Pelligrino; David M. Holtzman; T. S. Park
Neuroprotection against cerebral ischemia can be realized if the brain is preconditioned by previous exposure to a brief period of sublethal ischemia. The present study was undertaken to test the hypothesis that nitric oxide (NO) produced from the neuronal isoform of NO synthase (NOS) serves as a necessary signal for establishing an ischemia-tolerant state in brain. A newborn rat model of hypoxic preconditioning was used, wherein exposure to sublethal hypoxia (8% oxygen) for 3 hours renders postnatal day (PND) 6 animals completely resistant to a cerebral hypoxic-ischemic insult imposed 24 hours later. Postnatal day 6 animals were treated 0.5 hour before preconditioning hypoxia with the nonselective NOS inhibitor L-nitroarginine (2 mg/kg intraperitoneally). This treatment, which resulted in a 67 to 81% inhibition of calcium-dependent constitutive NOS activity 0.5 to 3.5 hours after its administration, completely blocked preconditioning-induced protection. However, administration of the neuronal NOS inhibitor 7-nitroindazole (40 mg/kg intraperitoneally) before preconditioning hypoxia, which decreased constitutive brain NOS activity by 58 to 81%, was without effect on preconditioning-induced cerebroprotection, as was pretreatment with the inducible NOS inhibitor aminoguanidine (400 mg/kg intraperitoneally). The protective effects of preconditioning were also not blocked by treating animals with competitive [3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate; 5 mg/kg intraperitoneally] or noncompetitive (MK-801; 1 mg/kg intraperitoneally) N-methyl-D-aspartate receptor antagonists prior to preconditioning hypoxia. These findings indicate that NO production and activity are critical to the induction of ischemic tolerance in this model. However, the results argue against the involvement of the neuronal NOS isoform, activated secondary to a hypoxia-induced stimulation of N-methyl-D-aspartate receptors, and against the involvement of the inducible NOS isoform, but rather suggest that NO produced by the endothelial NOS isoform is required to mediate this profound protective effect.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Philip B. Verghese; Joseph M. Castellano; Kanchan Garai; Yinong Wang; Hong Jiang; Aarti R. Shah; Guojun Bu; Carl Frieden; David M. Holtzman
Significance It has been proposed that differential physical interactions of apolipoprotein E (apoE) isoforms with soluble amyloid-β (Aβ) in brain fluids influence the metabolism of Aβ, providing a major mechanism to account for how APOE influences Alzheimer’s disease risk. The current study challenges this proposal and clearly shows that lipoproteins containing apoE isoforms are unlikely to play a significant role in Aβ metabolism by binding directly to Aβ in physiological fluids such as cerebrospinal fluid or interstitial fluid. Our in vitro and in vivo results suggest that apoE isoforms influence Aβ metabolism by competing for the same clearance pathways within the brain. Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer’s disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)–dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE’s regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.
JAMA Neurology | 2009
Nigel J. Cairns; Milos D. Ikonomovic; Tammie L.S. Benzinger; Martha Storandt; Anne M. Fagan; Aarti R. Shah; Lisa Taylor Reinwald; Deborah Carter; Angela Felton; David M. Holtzman; Mark A. Mintun; William E. Klunk; John C. Morris
BACKGROUND To date, there have been no reports of individuals who have been characterized longitudinally using clinical and cognitive measures and who transitioned from cognitive normality to early symptomatic Alzheimer disease (AD) during a period when both cerebrospinal fluid (CSF) markers and Pittsburgh Compound B (PiB) amyloid imaging were obtained. OBJECTIVE To determine the temporal relationships of clinical, cognitive, CSF, and PiB amyloid imaging markers of AD. DESIGN Case report. SETTING Alzheimer disease research center. PARTICIPANT Longitudinally assessed 85-year-old man in a memory and aging study who was cognitively normal at his initial and next 3 annual assessments. MAIN OUTCOME MEASURES Serial clinical and psychometric assessments over 6 years in addition to PiB imaging with positron emission tomography (PET) and CSF biomarker assays before autopsy. RESULTS Decline in measures of episodic memory and, to a lesser degree, working memory began at about age 88 years. PiB PET amyloid imaging was negative at age 88(1/2) years, but at age 89(1/2) years there was reduced amyloid beta 42 and elevated levels of tau in the CSF. Beginning at age 89 years, very mild cognitive and functional decline reported by his collateral source resulted in a diagnosis of very mild dementia of the Alzheimer type. After death at age 91 years, the autopsy revealed foci of frequent neocortical diffuse amyloid beta plaques sufficient to fulfill Khachaturian neuropathologic criteria for definite AD, but other neuropathologic criteria for AD were not met because only sparse neuritic plaques and neurofibrillary tangles were present. Postmortem biochemical analysis of the cerebral tissue confirmed that PiB PET binding was below the level needed for in vivo detection. CONCLUSION Clinical, cognitive, and CSF markers consistent with AD may precede detection of cerebral amyloid beta using amyloid imaging agents such as PiB that primarily label fibrillar amyloid beta plaques.
Experimental Neurology | 2000
C. Robert Almli; Todd J. Levy; Byung Hee Han; Aarti R. Shah; Jeffrey M. Gidday; David M. Holtzman
Hypoxic-ischemic (H-I) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal H-I injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, previous studies have shown that neurotrophins, such as brain-derived neurotrophic factor (BDNF), can be protective against neural tissue loss. The present study explored potential relationships between neural protective and behavioral protective strategies in this neonatal H-I model by determining if neonatal H-I was associated with behavioral spatial learning and memory deficits and whether the neurotrophin BDNF was protective against both brain injury and spatial learning/memory dysfunction. Postnatal day seven rats received vehicle or BDNF pretreatments (intracerebroventricular injections) followed by H-I or sham treatments and then tested for spatial learning and memory on the simple place task in the Morris water maze from postnatal days 20 to 30, and their brains were histologically analyzed at 4 weeks following treatments. H-I rats with vehicle pretreatment displayed significant tissue loss in the hippocampus (including CA1 neurons), cortex, and striatum, as well as severe spatial memory deficits (e.g., short probe times). BDNF pretreatment resulted in significant protection against both H-I-induced brain tissue losses and spatial memory impairments. These findings indicate that unilateral H-I brain injury in a neonatal rodent model is associated with cognitive deficits, and that BDNF pretreatment is protective against both brain injury and spatial memory impairment.