Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abby D. Benninghoff is active.

Publication


Featured researches published by Abby D. Benninghoff.


Steroids | 2006

Progestin, estrogen and androgen G-protein coupled receptors in fish gonads

Peter Thomas; Gwen Dressing; Yefei Pang; Håkan Berg; Christopher Tubbs; Abby D. Benninghoff; Kelly Doughty

The identities of the membrane receptors mediating the majority of rapid, cell surface-initiated, nongenomic (i.e. nonclassical) steroid actions described to date are unclear. Two novel 7-transmembrane spanning proteins, representing two distinct classes of steroid membrane receptors, membrane progestin receptor alpha (mPRalpha) and a membrane estrogen receptor (mER), GPR30, have recently been identified in several vertebrate species. Evidence that both receptors activate G-proteins and function as G-protein coupled receptors (GPCRs) is briefly reviewed. New data on progestin actions on fish gametes suggest a widespread involvement of mPRalpha in oocyte maturation and sperm hyperactivity in this vertebrate group. Information on the second messenger pathways activated upon estrogen binding to a membrane estrogen receptor in croaker gonads and preliminary evidence for the presence of a GPR30-like protein in fish gonads are discussed. Finally, initial characterization of the ligand binding, G-protein activation and molecular size of a membrane androgen receptor (mAR) in croaker ovaries suggests the presence of a third unique steroid receptor in fish gonads that also may function as a GPCR.


Toxicological Sciences | 2011

Estrogen-Like Activity of Perfluoroalkyl Acids In Vivo and Interaction with Human and Rainbow Trout Estrogen Receptors In Vitro

Abby D. Benninghoff; William H. Bisson; Daniel C. Koch; David J. Ehresman; Siva Kumar Kolluri; David E. Williams

The objectives of this study were to determine the structural characteristics of perfluoroalkyl acids (PFAAs) that confer estrogen-like activity in vivo using juvenile rainbow trout (Oncorhynchus mykiss) as an animal model and to determine whether these chemicals interact directly with the estrogen receptor (ER) using in vitro and in silico species comparison approaches. Perfluorooctanoic (PFOA), perfluorononanoic (PFNA), perfluorodecanoic (PFDA), and perfluoroundecanoic (PFUnDA) acids were all potent inducers of the estrogen-responsive biomarker protein vitellogenin (Vtg) in vivo, although at fairly high dietary exposures. A structure-activity relationship for PFAAs was observed, where eight to ten fluorinated carbons and a carboxylic acid end group were optimal for maximal Vtg induction. These in vivo findings were corroborated by in vitro mechanistic assays for trout and human ER. All PFAAs tested weakly bound to trout liver ER with half maximal inhibitory concentration (IC(50)) values of 15.2-289 μM. Additionally, PFOA, PFNA, PFDA, PFUnDA, and perlfuorooctane sulfonate (PFOS) significantly enhanced human ERα-dependent transcriptional activation at concentrations ranging from 10-1000 nM. Finally, we employed an in silico computational model based upon the crystal structure for the human ERα ligand-binding domain complexed with E2 to structurally investigate binding of these putative ligands to human, mouse, and trout ERα. PFOA, PFNA, PFDA, and PFOS all efficiently docked with ERα from different species and formed a hydrogen bond at residue Arg394/398/407 (human/mouse/trout) in a manner similar to the environmental estrogens bisphenol A and nonylphenol. Overall, these data support the contention that several PFAAs are weak environmental xenoestrogens of potential concern.


Environmental Health Perspectives | 2008

Genomic Profiling Reveals an Alternate Mechanism for Hepatic Tumor Promotion by Perfluorooctanoic Acid in Rainbow Trout

Susan C. Tilton; Gayle A. Orner; Abby D. Benninghoff; Hillary M. Carpenter; Jerry D. Hendricks; Cliff Pereira; David E. Williams

Background Perfluorooctanoic acid (PFOA) is a potent hepatocarcinogen and peroxisome proliferator (PP) in rodents. Humans are not susceptible to peroxisome proliferation and are considered refractory to carcinogenesis by PPs. Previous studies with rainbow trout indicate they are also insensitive to peroxisome proliferation by the PP dehydroepiandrosterone (DHEA), but are still susceptible to enhanced hepatocarcinogenesis after chronic exposure. Objectives In this study, we used trout as a unique in vivo tumor model to study the potential for PFOA carcinogenesis in the absence of peroxisome proliferation compared with the structurally diverse PPs clofibrate (CLOF) and DHEA. Mechanisms of carcinogenesis were identified from hepatic gene expression profiles phenotypically anchored to tumor outcome. Methods We fed aflatoxin B1 or sham-initiated animals 200–1,800 ppm PFOA in the diet for 30 weeks for tumor analysis. We subsequently examined gene expression by cDNA array in animals fed PFOA, DHEA, CLOF, or 5 ppm 17β-estradiol (E2, a known tumor promoter) in the diet for 14 days. Results PFOA (1,800 ppm or 50 mg/kg/day) and DHEA treatments resulted in enhanced liver tumor incidence and multiplicity (p < 0.0001), whereas CLOF showed no effect. Carcinogenesis was independent of peroxisome proliferation, measured by lack of peroxisomal β-oxidation and catalase activity. Alternately, both tumor promoters, PFOA and DHEA, resulted in estrogenic gene signatures with strong correlation to E2 by Pearson correlation (R = 0.81 and 0.78, respectively), whereas CLOF regulated no genes in common with E2. Conclusions These data suggest that the tumor-promoting activities of PFOA in trout are due to novel mechanisms involving estrogenic signaling and are independent of peroxisome proliferation.


Gut microbes | 2014

Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer

Korry J. Hintze; James Cox; Giovanni Rompato; Abby D. Benninghoff; Robert E. Ward; Jeff R. Broadbent; Michael Lefevre

Traditionally, mouse humanization studies have used human fecal transfer to germ-free animals. This practice requires gnotobiotic facilities and is restricted to gnotobiotic mouse lines, which limits humanized mouse research. We have developed a generalizable method to humanize non germ-free mice using antibiotic treatment and human fecal transfer. The method involves depleting resident intestinal microbiota with broad-spectrum antibiotics, introducing human microbiota from frozen fecal samples by weekly gavage, and maintaining mice in HEPA-filtered microisolator cages. Pyrosequencing cecal microbiota 16S rRNA genes showed that recipient mice adopt a humanized microbiota profile analogous to their human donors, and distinct from mice treated with only antibiotics (no fecal transfer) or untreated control mice. In the humanized mice, 75% of the sequence mass was observed in their respective human donor and conversely, 68% of the donor sequence mass was recovered in the recipient mice. Principal component analyses of GC- and HPLC-separated cecal metabolites were performed to determine effects of transplanted microbiota on the metabolome. Cecal metabolite profiles of mice treated with only antibiotics (no fecal transfer) and control mice were dissimilar from each other and from humanized mice. Metabolite profiles for mice humanized from different donor samples clustered near each other, yet were sufficiently distinct that separate clusters were apparent for each donor. Also, cecal concentrations of 57 metabolites were significantly different between humanization treatments. These data demonstrate that our protocol can be used to humanize non germ-free mice and is sufficiently robust to generate metabolomic differences between mice humanized from different human donors.


Journal of Agricultural and Food Chemistry | 2012

Formulation of the Total Western Diet (TWD) as a basal diet for rodent cancer studies.

Korry J. Hintze; Abby D. Benninghoff; Robert E. Ward

Rodent cancer studies typically use defined diets with nutrient profiles optimized for rodent health. However, a defined rodent diet that represents typical American nutrition in all aspects, including calorie sources and macro- and micronutrient composition, is not yet available. Thus, a nutrient density approach was used to formulate the new Total Western Diet (TWD) based on NHANES data for macro- and micronutrient intakes. The TWD has fewer calories from protein and carbohydrate sources and twice that from fat as compared to the AIN-93 diet. The new diet contains more saturated and monounsaturated fats, less polyunsaturated fat, fewer complex carbohydrates, and twice the level of simple sugars. The TWD includes less calcium, copper, folate, thiamin, and vitamins B6, B12, D, and E, but much more sodium. This newly devised diet that better represents typical American nutrition will be highly useful for studies employing animal models of human disease, including cancer.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Rainbow Trout (Oncorhynchus mykiss) and Ultra-Low Dose Cancer Studies

David E. Williams; Gayle A. Orner; Kristin D. Willard; Susan Tilton; Jerry D. Hendricks; Clifford B. Pereira; Abby D. Benninghoff; George S. Bailey

Cancer risk assessment utilizing rodents requires extrapolation across five orders of magnitude to estimate the Virtually Safe Dose (VSD). Regulatory agencies rely upon the Linear Extrapolated Dose (LED) except when sufficient information on mechanism of action justifies alternative models. Rainbow trout (Oncorhynchus mykiss) has been utilized at Oregon State University as a model for human cancer for forty years. Low cost and high capacity, made possible by our unique facility, along with low spontaneous background and high sensitivity, allow design and conduct of statistically challenging studies not possible in rodents. Utilization of custom microarrays demonstrates similarities in gene expression in trout and human hepatocellular carcinoma (HCC). We have completed one study employing over 42,000 trout with dibenzo[a,l]pyrene (DBP) and determined the dose resulting in 1 additional cancer in 5000 animals, a 50-fold enhancement over the mouse ED(01) study. Liver tumor incidence at low dose deviated significantly from linearity (concave down), whereas, DBP-DNA adductions deviated slightly (convex up). A second study is underway with aflatoxin B(1) (AFB(1)). Results to date indicate AFB(1) at low dose, in contrast to DBP, elicits a linear dose-response function on the log-log scale which falls below the LED with a slope slightly greater than 1.0. Such studies demonstrate the statistical power of the trout cancer model and strengthen the case for incorporation of these data-sets into risk assessment for these environmental human carcinogens.


ChemistryOpen | 2015

A Structurally-Tunable 3-Hydroxyflavone Motif for Visible Light-Induced Carbon Monoxide-Releasing Molecules (CORMs).

Stacey N. Anderson; Jason M. Richards; Hector Esquer; Abby D. Benninghoff; Atta M. Arif; Lisa M. Berreau

Molecules that can be used to deliver a controlled amount of carbon monoxide (CO) have the potential to facilitate investigations into the roles of this gaseous molecule in biology and advance therapeutic treatments. This has led to the development of light-induced CO-releasing molecules (photoCORMs). A goal in this field of research is the development of molecules that exhibit a combination of controlled CO release, favorable biological properties (e.g., low toxicity and trackability in cells), and structural tunability to affect CO release. Herein, we report a new biologically-inspired organic photoCORM motif that exhibits several features that are desirable in a next-generation photoCORM. We show that 3-hydroxyflavone-based compounds are easily synthesized and modified to impart changes in absorption features and quantum yield for CO release, exhibit low toxicity, are trackable in cells, and can exhibit both O2-dependent and -independent CO release reactivity.


PLOS ONE | 2012

3,3'-Diindolylmethane induces G1 arrest and apoptosis in human acute T-cell lymphoblastic leukemia cells.

Lyndsey E. Shorey; Amanda M. Hagman; David E. Williams; Emily Ho; Roderick H. Dashwood; Abby D. Benninghoff

Certain bioactive food components, including indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) from cruciferous vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations 8- to 25-fold lower than the parent compound I3C. DIM (7.5 µM) arrested CEM and HSB2 cells at the G1 phase of the cell cycle and 15 µM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25, TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for therapeutic application of DIM in T-ALL.


Cancer Prevention Research | 2013

The Role of Estrogen Receptor β in Transplacental Cancer Prevention by Indole-3-Carbinol

Abby D. Benninghoff; David E. Williams

In the present study, the efficacy of indole-3-carbinol (I3C), a key bioactive component of cruciferous vegetables, for prevention of cancer in offspring exposed in utero to the environmental carcinogen dibenzo[def,p]chrysene (DBC) was evaluated using an estrogen receptor β (ERβ) knockout mouse model. I3C was provided either through the maternal diet coincident with carcinogen exposure during pregnancy or directly to offspring postinitiation with DBC. I3C was effective at reducing T-cell acute lymphoblastic lymphoma/leukemia (T-ALL)–related mortality in offspring only if provided via the maternal diet, although a gender difference in the role of ERβ in mediating this response was evident. In female offspring, chemoprevention of T-ALL by maternal dietary I3C required expression of ERβ; survival in Esr2 wild-type and heterozygous female offspring was more than 90% compared with 66% in Esr2 null females. Alternatively, ERβ status did not significantly impact the transplacental chemoprevention by I3C in males. The possible role of ERβ in mediating lung carcinogenesis or chemoprevention by I3C was similarly complicated. Lung tumor incidence was unaltered by either dietary intervention, whereas lung tumor multiplicity was substantially reduced in Esr2 null females on the control diet and marginally lower in Esr2 null males exposed to I3C via the maternal diet compared with their wild-type and heterozygous counterparts. These findings suggest that I3C may act via ERβ to prevent or suppress DBC-initiated transplacental carcinogenesis but that the involvement of this receptor seems to differ depending on the cancer type and gender of the offspring. Cancer Prev Res; 6(4); 339–48. ©2013 AACR.


Journal of the American Chemical Society | 2017

Sense and Release: A Thiol-Responsive Flavonol-Based Photonically Driven Carbon Monoxide-Releasing Molecule That Operates via a Multiple-Input AND Logic Gate

Tatiana Soboleva; Hector Esquer; Abby D. Benninghoff; Lisa M. Berreau

Molecular structures capable of intracellular information processing that couple responses from biomarker signals to the release of drug molecules represent intelligent delivery systems. Herein we report a chemophotonically driven, sense-of-logic carbon monoxide-releasing molecule (SL-photoCORM). This extended flavonol motif operates via an AND logic gate by first sensing the cellular environment via detection of thiols and then releasing CO when triggered with visible light and O2. Overall, this approach couples the detection of a cellular redox biomarker with the ability to release a small-molecule gasotransmitter known to trigger pathways involved in pro- and anti-inflammatory effects in a dose-dependent manner. Significantly, the fluorescence properties of the flavonol-based SL-photoCORM produce a series of chemophotonic input responses via two photochromatic switches (blue-to-green and green-to-colorless), leading to trackability and spatiotemporal control of CO release. Examination of the O2 requirements of the CO release step revealed that the SL-photoCORM is suitable for use under conditions of variable cellular levels of O2. These combined properties within a single-molecular framework advance the field of CO-releasing molecules by providing feedback on the diversity and complexity of the cellular environment prior to CO release.

Collaboration


Dive into the Abby D. Benninghoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge