Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abby F. Dernburg is active.

Publication


Featured researches published by Abby F. Dernburg.


Cell | 1998

Meiotic Recombination in C. elegans Initiates by a Conserved Mechanism and Is Dispensable for Homologous Chromosome Synapsis

Abby F. Dernburg; Kent L. McDonald; Gary Moulder; Robert Barstead; Michael E. Dresser; Anne M. Villeneuve

Chromosome segregation at meiosis I depends on pairing and crossing-over between homologs. In most eukaryotes, pairing culminates with formation of the proteinaceous synaptonemal complex (SC). In budding yeast, recombination initiates through double-strand DNA breaks (DSBs) and is thought to be essential for SC formation. Here, we examine whether this mechanism for initiating meiotic recombination is conserved, and we test the dependence of homologous chromosome synapsis on recombination in C. elegans. We find that a homolog of the yeast DSB-generating enzyme, Spo11p, is required for meiotic exchange in this metazoan, and that radiation-induced breaks partially alleviate this dependence. Thus, initiation of recombination by DSBs is apparently conserved. However, homologous synapsis is independent of recombination in the nematode, since it occurs normally in a C. elegans spo-11 null mutant.


Current Biology | 1997

Interphase chromosomes undergo constrained diffusional motion in living cells

Wallace F. Marshall; Aaron F. Straight; John F. Marko; Jason R. Swedlow; Abby F. Dernburg; Andrew S. Belmont; Andrew W. Murray; David A. Agard; John W. Sedat

BACKGROUND Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of chromosome behavior, however, suggest that many essential processes, such as recombination, require interphase chromosomes to move around within the nucleus. RESULTS To reconcile these contradictory views, we exploited methods for tagging specific chromosome sites in living cells of Saccharomyces cerevisiae with green fluorescent protein and in Drosophila melanogaster with fluorescently labeled topoisomerase ll. Combining these techniques with submicrometer single-particle tracking, we directly measured the motion of interphase chromatin, at high resolution and in three dimensions. We found that chromatin does indeed undergo significant diffusive motion within the nucleus, but this motion is constrained such that a given chromatin segment is free to move within only a limited subregion of the nucleus. Chromatin diffusion was found to be insensitive to metabolic inhibitors, suggesting that it results from classical Brownian motion rather than from active motility. Nocodazole greatly reduced chromatin confinement, suggesting a role for the cytoskeleton in the maintenance of nuclear architecture. CONCLUSIONS We conclude that chromatin is free to undergo substantial Brownian motion, but that a given chromatin segment is confined to a subregion of the nucleus. This constrained diffusion is consistent with a highly defined nuclear architecture, but also allows enough motion for processes requiring chromosome motility to take place. These results lead to a model for the regulation of chromosome interactions by nuclear architecture.


Cell | 1996

Perturbation of Nuclear Architecture by Long-Distance Chromosome Interactions

Abby F. Dernburg; Karl W. Broman; Jennifer C. Fung; Wallace F. Marshall; Jennifer Philips; David A. Agard; John W. Sedat

SUMMARY Position-effect variegation (PEV) describes the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. Using FISH, we have tested whether variegated expression of the eye-color gene brown in Drosophila is influenced by its nuclear localization. In embryonic nuclei, a heterochromatic insertion at the brown locus is always spatially isolated from other heterochromatin. However, during larval development this insertion physically associates with other heterochromatic regions on the same chromosome in a stochastic manner. These observations indicate that the brown gene is silenced by specific contact with centromeric heterochromatin. Moreover, they provide direct evidence for long-range chromosome interactions and their impact on three-dimensional nuclear architecture, while providing a cohesive explanation for the phenomenon of PEV.


Cell | 1996

Direct evidence of a role for heterochromatin in meiotic chromosome segregation.

Abby F. Dernburg; John W. Sedat; R. Scott Hawley

We have investigated the mechanism that enables achiasmate chromosomes to segregate from each other at meiosis I in D. melanogaster oocytes. Using novel cytological methods, we asked whether nonexchange chromosomes are paired prior to disjunction. Our results show that the heterochromatin of homologous chromosomes remains associated throughout prophase until metaphase I regardless of whether they undergo exchange, suggesting that homologous recognition can lead to segregation even in the absence of chiasmata. However, partner chromosomes lacking homology do not pair prior to disjunction. Furthermore, euchromatic synapsis is not maintained throughout prophase. These observations provide a physical demonstration that homologous and heterologous achiasmate segregations occur by different mechanisms and establish a role for heterochromatin in maintaining the alignment of chromosomes during meiosis.


Current Biology | 1996

Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast

Jeremy Minshull; Aaron F. Straight; Adam D. Rudner; Abby F. Dernburg; Andrew S. Belmont; Andrew W. Murray

BACKGROUND Mitosis is regulated by MPF (maturation promoting factor), the active form of Cdc2/28-cyclin B complexes. Increasing levels of cyclin B abundance and the loss of inhibitory phosphates from Cdc2/28 drives cells into mitosis, whereas cyclin B destruction inactivates MPF and drives cells out of mitosis. Cells with defective spindles are arrested in mitosis by the spindle-assembly checkpoint, which prevents the destruction of mitotic cyclins and the inactivation of MPF. We have investigated the relationship between the spindle-assembly checkpoint, cyclin destruction, inhibitory phosphorylation of Cdc2/28, and exit from mitosis. RESULTS The previously characterized budding yeast mad mutants lack the spindle-assembly checkpoint. Spindle depolymerization does not arrest them in mitosis because they cannot stabilize cyclin B. In contrast, a newly isolated mutant in the budding yeast CDC55 gene, which encodes a protein phosphatase 2A (PP2A) regulatory subunit, shows a different checkpoint defect. In the presence of a defective spindle, these cells separate their sister chromatids and leave mitosis without inducing cyclin B destruction. Despite the persistence of B-type cyclins, cdc55 mutant cells inactivate MPF. Two experiments show that this inactivation is due to inhibitory phosphorylation on Cdc28: phosphotyrosine accumulates on Cdc28 in cdc55 delta cells whose spindles have been depolymerized, and a cdc28 mutant that lacks inhibitory phosphorylation sites on Cdc28 allows spindle defects to arrest cdc55 mutants in mitosis with active MPF and unseparated sister chromatids. CONCLUSIONS We conclude that perturbations of protein phosphatase activity allow MPF to be inactivated by inhibitory phosphorylation instead of by cyclin destruction. Under these conditions, sister chromatid separation appears to be regulated by MPF activity rather than by protein degradation. We discuss the role of PP2A and Cdc28 phosphorylation in cell-cycle control, and the possibility that the novel mitotic exit pathway plays a role in adaptation to prolonged activation of the spindle-assembly checkpoint.


Cell | 2005

HIM-8 Binds to the X Chromosome Pairing Center and Mediates Chromosome-Specific Meiotic Synapsis

Carolyn M. Phillips; Chihunt Wong; Needhi Bhalla; Peter M. Carlton; Pinky Weiser; Philip M. Meneely; Abby F. Dernburg

The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.


Cell | 2009

Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis

Aya Sato; Berith Isaac; Carolyn M. Phillips; Regina Rillo; Peter M. Carlton; David J. Wynne; Roshni A. Kasad; Abby F. Dernburg

During meiosis, each chromosome must pair with its unique homologous partner, a process that usually culminates with the formation of the synaptonemal complex (SC). In the nematode Caenorhabditis elegans, special regions on each chromosome known as pairing centers are essential for both homologous pairing and synapsis. We report that during early meiosis, pairing centers establish transient connections to the cytoplasmic microtubule network. These connections through the intact nuclear envelope require the SUN/KASH domain protein pair SUN-1 and ZYG-12. Disruption of microtubules inhibits chromosome pairing, indicating that these connections promote interhomolog interactions. Dynein activity is essential to license formation of the SC once pairing has been accomplished, most likely by overcoming a barrier imposed by the chromosome-nuclear envelope connection. Our findings thus provide insight into how homolog pairing is accomplished in meiosis and into the mechanisms regulating synapsis so that it occurs selectively between homologs. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Genome Research | 2011

Broad chromosomal domains of histone modification patterns in C. elegans

Tao Liu; Andreas Rechtsteiner; Thea A. Egelhofer; Anne Vielle; Isabel Latorre; Ming Sin Cheung; Sevinc Ercan; Kohta Ikegami; M. Jensen; Paulina Kolasinska-Zwierz; Heidi Rosenbaum; Hyunjin Shin; S. Taing; T. Takasaki; A. Leonardo Iniguez; Arshad Desai; Abby F. Dernburg; Hiroshi Kimura; Jason D. Lieb; Julie Ahringer; Susan Strome; X. Shirley Liu

Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development.


Developmental Cell | 2009

The SUN Rises on Meiotic Chromosome Dynamics

Yasushi Hiraoka; Abby F. Dernburg

Recent studies in diverse eukaryotes have implicated a family of nuclear envelope proteins containing SUN domains as key components of meiotic nuclear organization and chromosome dynamics. In many cases, these transmembrane proteins are also known to contribute to centrosome or spindle pole body function in mitotically dividing cells. During meiotic prophase, the apparent role of these SUN-domain proteins, together with their partner KASH-domain proteins, is to connect chromosomes through the intact nuclear envelope to force-generating mechanisms in the cytoplasm.


Nature | 2014

Comparative analysis of metazoan chromatin organization

Joshua W. K. Ho; Youngsook L. Jung; Tao Liu; Burak H. Alver; Soohyun Lee; Kohta Ikegami; Kyung Ah Sohn; Aki Minoda; Michael Y. Tolstorukov; Alex Appert; Stephen C. J. Parker; Tingting Gu; Anshul Kundaje; Nicole C. Riddle; Eric P. Bishop; Thea A. Egelhofer; Sheng'En Shawn Hu; Artyom A. Alekseyenko; Andreas Rechtsteiner; Dalal Asker; Jason A. Belsky; Sarah K. Bowman; Q. Brent Chen; Ron Chen; Daniel S. Day; Yan Dong; Andréa C. Dosé; Xikun Duan; Charles B. Epstein; Sevinc Ercan

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.

Collaboration


Dive into the Abby F. Dernburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Sedat

University of California

View shared research outputs
Top Co-Authors

Avatar

Needhi Bhalla

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ofer Rog

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Agard

University of California

View shared research outputs
Top Co-Authors

Avatar

David J. Wynne

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge