Abel Monteagudo Mendoza
Central University of Ecuador
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Abel Monteagudo Mendoza.
Nature | 2002
Oliver L. Phillips; Rodolfo Vásquez Martínez; L. Arroyo; Timothy R. Baker; T. Killeen; Simon L. Lewis; Yadvinder Malhi; Abel Monteagudo Mendoza; David A. Neill; Percy Núñez Vargas; Miguel Alexiades; C. Cerón; A. Di Fiore; Terry L. Erwin; A. Jardim; Walter A. Palacios; M. Saldias; B. Vinceti
Ecological orthodoxy suggests that old-growth forests should be close to dynamic equilibrium, but this view has been challenged by recent findings that neotropical forests are accumulating carbon and biomass, possibly in response to the increasing atmospheric concentrations of carbon dioxide. However, it is unclear whether the recent increase in tree biomass has been accompanied by a shift in community composition. Such changes could reduce or enhance the carbon storage potential of old-growth forests in the long term. Here we show that non-fragmented Amazon forests are experiencing a concerted increase in the density, basal area and mean size of woody climbing plants (lianas). Over the last two decades of the twentieth century the dominance of large lianas relative to trees has increased by 1.7–4.6% a year. Lianas enhance tree mortality and suppress tree growth, so their rapid increase implies that the tropical terrestrial carbon sink may shut down sooner than current models suggest. Predictions of future tropical carbon fluxes will need to account for the changing composition and dynamics of supposedly undisturbed forests.
Ecology | 2005
Oliver L. Phillips; Rodolfo Vásquez Martínez; Abel Monteagudo Mendoza; Timothy R. Baker; Percy Núñez Vargas
Lianas (woody vines) are an important component of lowland tropical forests. We report large liana and tree inventory and dynamics data from Amazonia over periods of up to 24 years, making this the longest geographically extensive study of liana ecology to date. We use these results to address basic questions about the ecology of large lianas in mature forests and their interactions with trees. In one intensively studied site we find that large lianas (
Nature Communications | 2014
Fernando D. B. Espirito-Santo; Manuel Gloor; Michael Keller; Yadvinder Malhi; Sassan S. Saatchi; Bruce Walker Nelson; Rc Junior; Cleuton Pereira; Jon Lloyd; Stephen E. Frolking; Michael Palace; Yosio Edemir Shimabukuro; Duarte; Abel Monteagudo Mendoza; Gabriela Lopez-Gonzalez; Timothy R. Baker; Ted R. Feldpausch; Roel J. W. Brienen; Gregory P. Asner; Doreen S. Boyd; Oliver L. Phillips
10 cm diameter) represent ,5% of liana stems, but 80% of biomass of well-lit upper canopy lianas. Across sites, large lianas and large trees are both most suc- cessful in terms of structural importance in richer soil forests, but large liana success may be controlled more by the availability of large tree supports rather than directly by soil conditions. Long-term annual turnover rates of large lianas are 5-8%, three times those of trees. Lianas are implicated in large tree mortality: liana-infested large trees are three times more likely to die than liana-free large trees, and large lianas are involved in the death of at least 30% of tree basal area. Thus large lianas are a much more dynamic component of Amazon forests than are canopy trees, and they play a much more significant functional role than their structural contribution suggests.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Naomi M. Levine; Ke Zhang; Marcos Longo; Alessandro Baccini; Oliver L. Phillips; Simon L. Lewis; Esteban Álvarez-Dávila; Ana Andrade; Roel J. W. Brienen; Terry L. Erwin; Ted R. Feldpausch; Abel Monteagudo Mendoza; Percy Núñez Vargas; Adriana Prieto; Javier E. Silva-Espejo; Yadvinder Malhi; Paul R. Moorcroft
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y−1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y−1, and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y−1. Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink.
Journal of Ecology | 2014
Lindsay Banin; Simon L. Lewis; Gabriela Lopez-Gonzalez; Timothy R. Baker; Carlos A. Quesada; Kuo-Jung Chao; David F. R. P. Burslem; Reuben Nilus; Kamariah Abu Salim; Helen C. Keeling; Sylvester Tan; Stuart J. Davies; Abel Monteagudo Mendoza; Rodolfo Vasquez; Jon Lloyd; David A. Neill; Nigel C. A. Pitman; Oliver L. Phillips
Significance Understanding how changes in climate will affect terrestrial ecosystems is particularly important in tropical forest regions, which store large amounts of carbon and exert important feedbacks onto regional and global climates. By combining multiple types of observations with a state-of-the-art terrestrial ecosystem model, we demonstrate that the sensitivity of tropical forests to changes in climate is dependent on the length of the dry season and soil type, but also, importantly, on the dynamics of individual-level competition within plant canopies. These interactions result in ecosystems that are more sensitive to changes in climate than has been predicted by traditional models but that transition from one ecosystem type to another in a continuous, non–tipping-point manner. Amazon forests, which store ∼50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem’s resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest’s response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.
Ecology Letters | 2014
Timothy R. Baker; R. Toby Pennington; Susana Magallón; Emanuel Gloor; William F. Laurance; Miguel Alexiades; Esteban Álvarez; Alejandro Araujo; E.J.M.M. Arets; Gerardo Aymard; Atila Alves de Oliveira; Iêda Leão do Amaral; Luzmila Arroyo; Damien Bonal; Roel J. W. Brienen; Jérôme Chave; Kyle G. Dexter; Anthony Di Fiore; Eduardo Eler; Ted R. Feldpausch; Leandro V. Ferreira; Gabriela Lopez-Gonzalez; Geertje M.F. van der Heijden; Niro Higuchi; Eurídice N. Honorio; Isau Huamantupa; Timothy J. Killeen; Susan G. Laurance; Claudio Leaño; Simon L. Lewis
Summary: Tropical forest above-ground wood production (AGWP) varies substantially along environmental gradients. Some evidence suggests that AGWP may vary between regions and specifically that Asian forests have particularly high AGWP. However, comparisons across biogeographic regions using standardized methods are lacking, limiting our assessment of pan-tropical variation in AGWP and potential causes. We sampled AGWP in NW Amazon (17 long-term forest plots) and N Borneo (11 plots), both with abundant year-round precipitation. Within each region, forests growing on a broad range of edaphic conditions were sampled using standardized soil and forest measurement techniques. Plot-level AGWP was 49% greater in Borneo than in Amazonia (9.73 ± 0.56 vs. 6.53 ± 0.34 Mg dry mass ha -1 a -1 , respectively; regional mean ± 1 SE). AGWP was positively associated with soil fertility (PCA axes, sum of bases and total P). After controlling for the edaphic environment, AGWP remained significantly higher in Bornean plots. Differences in AGWP were largely attributable to differing height-diameter allometry in the two regions and the abundance of large trees in Borneo. This may be explained, in part, by the greater solar radiation in Borneo compared with NW Amazonia. Trees belonging to the dominant SE Asian family, Dipterocarpaceae, gained woody biomass faster than otherwise equivalent, neighbouring non-dipterocarps, implying that the exceptional production of Bornean forests may be driven by floristic elements. This dominant SE Asian family may partition biomass differently or be more efficient at harvesting resources and in converting them to woody biomass. Synthesis. N Bornean forests have much greater AGWP rates than those in NW Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history. North Bornean forests have much greater AGWP rates than those in north-western Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why these Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history.
Ecography | 2017
Adriane Esquivel-Muelbert; Timothy R. Baker; Kyle G. Dexter; Simon L. Lewis; Hans ter Steege; Gabriela Lopez-Gonzalez; Abel Monteagudo Mendoza; Roel J. W. Brienen; Ted R. Feldpausch; Nigel C. A. Pitman; Alfonso Alonso; Geertje M.F. van der Heijden; Marielos Peña-Claros; Manuel Ahuite; Miguel Alexiaides; Esteban Álvarez Dávila; Alejandro Araujo Murakami; Luzmila Arroyo; Milton Aulestia; Henrik Balslev; Jorcely Barroso; Rene G. A. Boot; Ángela Cano; Victor Chama Moscoso; James A. Comiskey; Fernando Cornejo; Francisco Dallmeier; Douglas C. Daly; Nállarett Dávila; Joost F. Duivenvoorden
The Amazon rain forest sustains the worlds highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.
Proceedings of the Royal Society B: Biological Sciences | 2016
Fernanda Coelho de Souza; Kyle G. Dexter; Oliver L. Phillips; Roel J. W. Brienen; Jérôme Chave; David Galbraith; Gabriela Lopez Gonzalez; Abel Monteagudo Mendoza; R. Toby Pennington; Lourens Poorter; Miguel Alexiades; Esteban Álvarez-Dávila; Ana Andrade; Luis E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets; Gerardo A. Aymard C.; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; James A. Comiskey; Fernando Cornejo Valverde; Plínio Barbosa de Camargo; Anthony Di Fiore; Fernando Elias; Terry L. Erwin; Ted R. Feldpausch; Leandro V. Ferreira
Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This process implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions it predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the Western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the worlds most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.
Arnaldoa | 2015
Rodolfo Vásquez Martínez; Abel Monteagudo Mendoza
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.
Nature Communications | 2015
Fernando D. B. Espirito-Santo; Manuel Gloor; Michael Keller; Yadvinder Malhi; Sassan Saatchi; Bruce Walker Nelson; Raimundo Cosme de Oliveira Junior; Cleuton Pereira; Jon Lloyd; Steve Frolking; Michael Palace; Yosio Edemir Shimabukuro; Valdete Duarte; Abel Monteagudo Mendoza; Gabriela Lopez-Gonzalez; Timothy R. Baker; Ted R. Feldpausch; Roel J. W. Brienen; Gregory P. Asner; Doreen S. Boyd; Oliver L. Phillips
Resumen Se describe e ilustra Hasseltia yanachagaensis, especie nueva de Salicaceae, procedente de la zona de amortiguamiento oeste del Parque Nacional Yanachaga-Chemillen, departamento de Pasco, Peru; tambien se discuten sus relaciones con otras especies afines. Palabras clave: Hasseltia , especie nueva, Salicaceae, Peru. Abstract Hasseltia yanachagaensis, a new species of Salicacee, from buffer zone of Yanachaga-Chemillen National Park, department of Pasco, Peru, is described and illustrated; it is also discussed its relationships with other species. Keywords: Hasseltia , sp. nov., Salicaceae, Peru.