Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abigail K. R. Lytton-Jean is active.

Publication


Featured researches published by Abigail K. R. Lytton-Jean.


Science | 2006

Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation

Nathaniel L. Rosi; David A. Giljohann; C. Shad Thaxton; Abigail K. R. Lytton-Jean; Min Su Han; Chad A. Mirkin

We describe the use of gold nanoparticle-oligonucleotide complexes as intracellular gene regulation agents for the control of protein expression in cells. These oligonucleotide-modified nanoparticles have affinity constants for complementary nucleic acids that are higher than their unmodified oligonucleotide counterparts, are less susceptible to degradation by nuclease activity, exhibit greater than 99% cellular uptake, can introduce oligonucleotides at a higher effective concentration than conventional transfection agents, and are nontoxic to the cells under the conditions studied. By chemically tailoring the density of DNA bound to the surface of gold nanoparticles, we demonstrated a tunable gene knockdown.


Nature | 2008

DNA-programmable nanoparticle crystallization

Sung Yong Park; Abigail K. R. Lytton-Jean; Byeongdu Lee; Steven Weigand; George C. Schatz; Chad A. Mirkin

It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle–oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.


Nature Nanotechnology | 2012

Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.

Hyukjin Lee; Abigail K. R. Lytton-Jean; Yi Chen; Kevin Love; Angela I. Park; Emmanouil D. Karagiannis; Alfica Sehgal; William Querbes; Christopher Zurenko; Muthusamy Jayaraman; Chang G. Peng; Klaus Charisse; Anna Borodovsky; Muthiah Manoharan; Jessica S. Donahoe; Jessica Truelove; Matthias Nahrendorf; Robert Langer; Daniel G. Anderson

Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min).


Nature Nanotechnology | 2014

In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight

James E. Dahlman; Carmen Barnes; Omar F. Khan; Aude Thiriot; Siddharth Jhunjunwala; Taylor E. Shaw; Yiping Xing; Hendrik B. Sager; Gaurav Sahay; Andrew Bader; Roman L. Bogorad; Hao Yin; Tim Racie; Yizhou Dong; Shan Jiang; Danielle Seedorf; Apeksha Dave; Kamaljeet Singh Sandhu; Matthew J. Webber; Tatiana Novobrantseva; Vera M. Ruda; Abigail K. R. Lytton-Jean; Christopher G. Levins; Brian T. Kalish; Dayna K. Mudge; Mario Perez; Ludmila Abezgauz; Partha Dutta; Lynelle Smith; Klaus Charisse

Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A vector-free microfluidic platform for intracellular delivery.

Armon Sharei; Janet Zoldan; Andrea Adamo; Woo Young Sim; Nahyun Cho; Emily L. Jackson; Shirley Mao; Sabine Schneider; Min-Joon Han; Abigail K. R. Lytton-Jean; Pamela Basto; Siddharth Jhunjhunwala; Jungmin Lee; Daniel A. Heller; Jeon Woong Kang; George C. Hartoularos; Kwang-Soo Kim; Daniel G. Anderson; Robert Langer; Klavs F. Jensen

Intracellular delivery of macromolecules is a challenge in research and therapeutic applications. Existing vector-based and physical methods have limitations, including their reliance on exogenous materials or electrical fields, which can lead to toxicity or off-target effects. We describe a microfluidic approach to delivery in which cells are mechanically deformed as they pass through a constriction 30–80% smaller than the cell diameter. The resulting controlled application of compression and shear forces results in the formation of transient holes that enable the diffusion of material from the surrounding buffer into the cytosol. The method has demonstrated the ability to deliver a range of material, such as carbon nanotubes, proteins, and siRNA, to 11 cell types, including embryonic stem cells and immune cells. When used for the delivery of transcription factors, the microfluidic devices produced a 10-fold improvement in colony formation relative to electroporation and cell-penetrating peptides. Indeed, its ability to deliver structurally diverse materials and its applicability to difficult-to-transfect primary cells indicate that this method could potentially enable many research and clinical applications.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates

Yizhou Dong; Kevin Love; J. Robert Dorkin; Sasilada Sirirungruang; Yunlong Zhang; Delai Chen; Roman L. Bogorad; Hao Yin; Yi Chen; Arturo Vegas; Christopher A. Alabi; Gaurav Sahay; Karsten Olejnik; Weiheng Wang; Avi Schroeder; Abigail K. R. Lytton-Jean; Daniel J. Siegwart; Akin Akinc; Carmen Barnes; Scott Barros; Mary Carioto; Kevin Fitzgerald; Julia Hettinger; Varun Kumar; Tatiana Novobrantseva; June Qin; William Querbes; Victor Koteliansky; Robert Langer; Daniel G. Anderson

Significance The safe, selective, and efficient delivery of siRNA is a key challenge to the broad application of siRNA therapeutics in humans. Motivated by the structure of lipoproteins, we developed lipopeptide nanomaterials for siRNA delivery. In vivo in mice, siRNA–lipopeptide particles provide the most potent delivery to hepatocytes (ED50 ∼ 0.002 mg/kg for FVII silencing), with the highest selectivity of delivery to hepatocytes over nontarget cell types (orders of magnitude), yet reported. These materials also show efficacy in nonhuman primates. siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery

Daniel J. Siegwart; Kathryn A. Whitehead; Lutz Nuhn; Gaurav Sahay; Hao Cheng; Shan Jiang; Minglin Ma; Abigail K. R. Lytton-Jean; Arturo Vegas; Patrick Fenton; Christopher G. Levins; Kevin Love; Haeshin Lee; Christina Cortez; Sean P. Collins; Ying Fei Li; Janice Jang; William Querbes; Christopher Zurenko; Tatiana Novobrantseva; Robert Langer; Daniel G. Anderson

Analogous to an assembly line, we employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internalization, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery. Analysis revealed structure-function relationships and beneficial design guidelines, including a higher reactive block weight fraction, stoichiometric equivalence between epoxides and amines, and thin hydrophilic shells. Cross-linkers optimally possessed tertiary dimethylamine or piperazine groups and potential buffering capacity. Covalent cholesterol attachment allowed for transfection in vivo to liver hepatocytes in mice. The ability to tune the chemical nature of the core and shell may afford utility of these materials in additional applications.


Nature Materials | 2010

DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles.

Petr Cigler; Abigail K. R. Lytton-Jean; Daniel G. Anderson; M. G. Finn; Sung Yong Park

The formation of diamond structures from tailorable building blocks is an important goal in colloidal crystallization because the non-compact diamond lattice is an essential component of photonic crystals for the visible-light range. However, designing nanoparticle systems that self-assemble into non-compact structures has proved difficult. Although several methods have been proposed, single-component nanoparticle assembly of a diamond structure has not been reported. Binary systems, in which at least one component is arranged in a diamond lattice, provide alternatives, but control of interparticle interactions is critical to this approach. DNA has been used for this purpose in a number of systems. Here we show the creation of a non-compact lattice by DNA-programmed crystallization using surface-modified Qβ phage capsid particles and gold nanoparticles, engineered to have similar effective radii. When combined with the proper connecting oligonucleotides, these components form NaTl-type colloidal crystalline structures containing interpenetrating organic and inorganic diamond lattices, as determined by small-angle X-ray scattering. DNA control of assembly is therefore shown to be compatible with particles possessing very different properties, as long as they are amenable to surface modification.


Small | 2011

Five Years of siRNA Delivery: Spotlight on Gold Nanoparticles

Abigail K. R. Lytton-Jean; Robert Langer; Daniel G. Anderson

Gold nanoparticles have become widely used in scientific research due to their unique physical and chemical properties. In the last several years their use as siRNA delivery agents has been investigated. Here, progress made using gold nanoparticles for siRNA delivery is described and the different strategies employed are compared.


Biomaterials | 2011

Directing human embryonic stem cell differentiation by non-viral delivery of siRNA in 3D culture.

Janet Zoldan; Abigail K. R. Lytton-Jean; Emmanouil D. Karagiannis; Kaila Deiorio-Haggar; Leon M. Bellan; Robert Langer; Daniel G. Anderson

Human embryonic stem cells (hESCs) hold great potential as a resource for regenerative medicine. Before achieving therapeutic relevancy, methods must be developed to control stem cell differentiation. It is clear that stem cells can respond to genetic signals, such as those imparted by nucleic acids, to promote lineage-specific differentiation. Here we have developed an efficient system for delivering siRNA to hESCs in a 3D culture matrix using lipid-like materials. We show that non-viral siRNA delivery in a 3D scaffolds can efficiently knockdown 90% of GFP expression in GFP-hESCs. We further show that this system can be used as a platform for directing hESC differentiation. Through siRNA silencing of the KDR receptor gene, we achieve concurrent downregulation (60-90%) in genes representative of the endoderm germ layer and significant upregulation of genes representative of the mesoderm germ layer (27-90 fold). This demonstrates that siRNA can direct stem cell differentiation by blocking genes representative of one germ layer and also provides a particularly powerful means to isolate the endoderm germ layer from the mesoderm and ectoderm. This ability to inhibit endoderm germ layer differentiation could allow for improved control over hESC differentiation to desired cell types.

Collaboration


Dive into the Abigail K. R. Lytton-Jean's collaboration.

Top Co-Authors

Avatar

Daniel G. Anderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Langer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanouil D. Karagiannis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Janet Zoldan

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Kevin Love

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Chen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge