Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Love is active.

Publication


Featured researches published by Kevin Love.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Lipid-like materials for low-dose, in vivo gene silencing

Kevin Love; Kerry P. Mahon; Christopher G. Levins; Kathryn A. Whitehead; William Querbes; J. Robert Dorkin; June Qin; William Cantley; Liu Liang Qin; Timothy Racie; Maria Frank-Kamenetsky; Ka Ning Yip; Rene Alvarez; Dinah Sah; Antonin de Fougerolles; Kevin Fitzgerald; Victor Koteliansky; Akin Akinc; Robert Langer; Daniel G. Anderson

Significant effort has been applied to discover and develop vehicles which can guide small interfering RNAs (siRNA) through the many barriers guarding the interior of target cells. While studies have demonstrated the potential of gene silencing in vivo, improvements in delivery efficacy are required to fulfill the broadest potential of RNA interference therapeutics. Through the combinatorial synthesis and screening of a different class of materials, a formulation has been identified that enables siRNA-directed liver gene silencing in mice at doses below 0.01 mg/kg. This formulation was also shown to specifically inhibit expression of five hepatic genes simultaneously, after a single injection. The potential of this formulation was further validated in nonhuman primates, where high levels of knockdown of the clinically relevant gene transthyretin was observed at doses as low as 0.03 mg/kg. To our knowledge, this formulation facilitates gene silencing at orders-of-magnitude lower doses than required by any previously described siRNA liver delivery system.


Nature Nanotechnology | 2012

Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.

Hyukjin Lee; Abigail K. R. Lytton-Jean; Yi Chen; Kevin Love; Angela I. Park; Emmanouil D. Karagiannis; Alfica Sehgal; William Querbes; Christopher Zurenko; Muthusamy Jayaraman; Chang G. Peng; Klaus Charisse; Anna Borodovsky; Muthiah Manoharan; Jessica S. Donahoe; Jessica Truelove; Matthias Nahrendorf; Robert Langer; Daniel G. Anderson

Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min).


Nature Biotechnology | 2011

Therapeutic siRNA silencing in inflammatory monocytes in mice

Florian Leuschner; Partha Dutta; Rostic Gorbatov; Tatiana Novobrantseva; Jessica S. Donahoe; Gabriel Courties; Kang Mi Lee; James I. Kim; James F. Markmann; Brett Marinelli; Peter Panizzi; Won Woo Lee; Yoshiko Iwamoto; Hila Epstein-Barash; William Cantley; Jamie Wong; Virna Cortez-Retamozo; Andita Newton; Kevin Love; Peter Libby; Mikael J. Pittet; Filip K. Swirski; Victor Koteliansky; Robert Langer; Ralph Weissleder; Daniel G. Anderson; Matthias Nahrendorf

Excessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes—but not the noninflammatory subset—depend on the chemokine receptor CCR2 for localization to injured tissue. Here we present an optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes. Efficient degradation of CCR2 mRNA in monocytes prevents their accumulation in sites of inflammation. Specifically, the treatment attenuates their number in atherosclerotic plaques, reduces infarct size after coronary artery occlusion, prolongs normoglycemia in diabetic mice after pancreatic islet transplantation, and results in reduced tumor volumes and lower numbers of tumor-associated macrophages.


Nano Letters | 2009

Gold, Poly(β-amino ester) Nanoparticles for Small Interfering RNA Delivery

Jae Seung Lee; Jordan J. Green; Kevin Love; Joel C. Sunshine; Robert Langer; Daniel G. Anderson

The safe and effective delivery of RNA therapeutics remains the major barrier to their broad clinical application. Here we develop a new nanoparticulate delivery system based on inorganic particles and biodegradable polycations. First, gold nanoparticles were modified with the hydrophilic polymer poly(ethylene glycol) (PEG), and then small interfering RNA (siRNA) was conjugated to the nanoparticles via biodegradable disulfide linkages, with approximately 30 strands of siRNA per nanoparticle. The particles were then coated with a library of end-modified poly(beta-amino ester)s (PBAEs), previously identified as capable of facilitating intracellular DNA delivery. Nanoparticulate formulations developed here facilitate high levels of in vitro siRNA delivery, facilitating delivery as good or better than the commercially available lipid reagent, Lipofectamine 2000.


Journal of the American Chemical Society | 2012

Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation

Delai Chen; Kevin Love; Yi Chen; Ahmed A. Eltoukhy; Christian J. Kastrup; Gaurav Sahay; Alvin Jeon; Yizhou Dong; Kathryn A. Whitehead; Daniel G. Anderson

The discovery of potent new materials for in vivo delivery of nucleic acids depends upon successful formulation of the active molecules into a dosage form suitable for the physiological environment. Because of the inefficiencies of current formulation methods, materials are usually first evaluated for in vitro delivery efficacy as simple ionic complexes with the nucleic acids (lipoplexes). The predictive value of such assays, however, has never been systematically studied. Here, for the first time, by developing a microfluidic method that allowed the rapid preparation of high-quality siRNA-containing lipid nanoparticles (LNPs) for a large number of materials, we have shown that gene silencing assays employing lipoplexes result in a high rate of false negatives (~90%) that can largely be avoided through formulation. Seven novel materials with in vivo gene silencing potencies of >90% at a dose of 1.0 mg/kg in mice were discovered. This method will facilitate the discovery of next-generation reagents for LNP-mediated nucleic acid delivery.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates

Yizhou Dong; Kevin Love; J. Robert Dorkin; Sasilada Sirirungruang; Yunlong Zhang; Delai Chen; Roman L. Bogorad; Hao Yin; Yi Chen; Arturo Vegas; Christopher A. Alabi; Gaurav Sahay; Karsten Olejnik; Weiheng Wang; Avi Schroeder; Abigail K. R. Lytton-Jean; Daniel J. Siegwart; Akin Akinc; Carmen Barnes; Scott Barros; Mary Carioto; Kevin Fitzgerald; Julia Hettinger; Varun Kumar; Tatiana Novobrantseva; June Qin; William Querbes; Victor Koteliansky; Robert Langer; Daniel G. Anderson

Significance The safe, selective, and efficient delivery of siRNA is a key challenge to the broad application of siRNA therapeutics in humans. Motivated by the structure of lipoproteins, we developed lipopeptide nanomaterials for siRNA delivery. In vivo in mice, siRNA–lipopeptide particles provide the most potent delivery to hepatocytes (ED50 ∼ 0.002 mg/kg for FVII silencing), with the highest selectivity of delivery to hepatocytes over nontarget cell types (orders of magnitude), yet reported. These materials also show efficacy in nonhuman primates. siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery

Daniel J. Siegwart; Kathryn A. Whitehead; Lutz Nuhn; Gaurav Sahay; Hao Cheng; Shan Jiang; Minglin Ma; Abigail K. R. Lytton-Jean; Arturo Vegas; Patrick Fenton; Christopher G. Levins; Kevin Love; Haeshin Lee; Christina Cortez; Sean P. Collins; Ying Fei Li; Janice Jang; William Querbes; Christopher Zurenko; Tatiana Novobrantseva; Robert Langer; Daniel G. Anderson

Analogous to an assembly line, we employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internalization, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery. Analysis revealed structure-function relationships and beneficial design guidelines, including a higher reactive block weight fraction, stoichiometric equivalence between epoxides and amines, and thin hydrophilic shells. Cross-linkers optimally possessed tertiary dimethylamine or piperazine groups and potential buffering capacity. Covalent cholesterol attachment allowed for transfection in vivo to liver hepatocytes in mice. The ability to tune the chemical nature of the core and shell may afford utility of these materials in additional applications.


Nano Letters | 2013

Lipidoid-Coated Iron Oxide Nanoparticles for Efficient DNA and siRNA delivery

Shan Jiang; Ahmed A. Eltoukhy; Kevin Love; Robert Langer; Daniel G. Anderson

The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50-100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia.


Proceedings of the National Academy of Sciences of the United States of America | 2013

BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition

Rizwan Haq; Satoru Yokoyama; Elena B. Hawryluk; Göran Jönsson; Dennie T. Frederick; Kevin T. McHenry; Dale Porter; Thanh Nga Tran; Kevin Love; Robert Langer; Daniel G. Anderson; Levi A. Garraway; Lyn M. Duncan; Donald L. Morton; Dave S.B. Hoon; Jennifer A. Wargo; Jun S. Song; David E. Fisher

Although targeting oncogenic mutations in the BRAF serine/threonine kinase with small molecule inhibitors can lead to significant clinical responses in melanoma, it fails to eradicate tumors in nearly all patients. Successful therapy will be aided by identification of intrinsic mechanisms that protect tumor cells from death. Here, we used a bioinformatics approach to identify drug-able, “driver” oncogenes restricted to tumor versus normal tissues. Applying this method to 88 short-term melanoma cell cultures, we show that the antiapoptotic BCL2 family member BCL2A1 is recurrently amplified in ∼30% of melanomas and is necessary for melanoma growth. BCL2A1 overexpression also promotes melanomagenesis of BRAF-immortalized melanocytes. We find that high-level expression of BCL2A1 is restricted to melanoma due to direct transcriptional control by the melanoma oncogene MITF. Although BRAF inhibitors lead to cell cycle arrest and modest apoptosis, we find that apoptosis is significantly enhanced by suppression of BCL2A1 in melanomas with BCL2A1 or MITF amplification. Moreover, we find that BCL2A1 expression is associated with poorer clinical responses to BRAF pathway inhibitors in melanoma patients. Cotreatment of melanomas with BRAF inhibitors and obatoclax, an inhibitor of BCL2A1 and other BCL2 family members, overcomes intrinsic resistance to BRAF inhibitors in BCL2A1-amplified cells in vitro and in vivo. These studies identify MITF-BCL2A1 as a lineage-specific oncogenic pathway in melanoma and underscore its role for improved response to BRAF-directed therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis

Yu-Hung Huang; Yunhua Bao; Weidan Peng; Michael Goldberg; Kevin Love; David Bumcrot; Geoffrey Cole; Robert Langer; Daniel G. Anderson; Janet A. Sawicki

Claudin-3 (CLDN3) is a tight junction protein that is overexpressed in 90% of ovarian tumors. Previous in vitro studies have indicated that CLDN3 overexpression promotes the migration, invasion, and survival of ovarian cancer cells. Here, we investigated the efficacy of lipidoid-formulated CLDN3 siRNA in 3 different ovarian cancer models. Intratumoral injection of lipidoid/CLDN3 siRNA into OVCAR-3 xenografts resulted in dramatic silencing of CLDN3, significant reduction in cell proliferation, reduction in tumor growth, and a significant increase in the number of apoptotic cells. Intraperitoneal injection of lipidoid-formulated CLDN3 siRNA resulted in a substantial reduction in tumor burden in MISIIR/TAg transgenic mice and mice bearing tumors derived from mouse ovarian surface epithelial cells. Ascites development was reduced in CLDN3 siRNA-treated mice, suggesting the treatment effectively suppressed metastasis. Toxicity was not observed after multiple i.p. injections. Importantly, treatment of mice with nonimmunostimulatory 2′-OMe modified CLDN3 siRNA was as effective in suppressing tumor growth as unmodifed siRNA. These results suggest that lipidoid-formulated CLDN3 siRNA has potential as a therapeutic for ovarian cancer.

Collaboration


Dive into the Kevin Love's collaboration.

Top Co-Authors

Avatar

Daniel G. Anderson

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Robert Langer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander M. Klibanov

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alisha K. Weight

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alyssa M. Larson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gaurav Sahay

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher G. Levins

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge