Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam J. Dupuy is active.

Publication


Featured researches published by Adam J. Dupuy.


Nature | 2005

Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system

Adam J. Dupuy; Keiko Akagi; David A. Largaespada; Neal G. Copeland; Nancy A. Jenkins

Transposons have provided important genetic tools for functional genomic screens in lower eukaryotes but have proven less useful in higher eukaryotes because of their low transposition frequency. Here we show that Sleeping Beauty (SB), a member of the Tc1/mariner class of transposons, can be mobilized in mouse somatic cells at frequencies high enough to induce embryonic death and cancer in wild-type mice. Tumours are aggressive, with some animals developing two or even three different types of cancer within a few months of birth. The tumours result from SB insertional mutagenesis of cancer genes, thus facilitating the identification of genes and pathways that induce disease. SB transposition can easily be controlled to mutagenize any target tissue and can therefore, in principle, be used to induce many of the cancers affecting humans, including those for which little is known about the aetiology. The uses of SB are also not restricted to the mouse and could potentially be used for forward genetic screens in any higher eukaryote in which transgenesis is possible.


Nature | 2005

Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse

Lara S. Collier; Corey M. Carlson; Shruthi Ravimohan; Adam J. Dupuy; David A. Largaespada

Retroviruses, acting as somatic cell insertional mutagens, have been widely used to identify cancer genes in the haematopoietic system and mammary gland. An insertional mutagen for use in other mouse somatic cells would facilitate the identification of genes involved in tumour formation in a wider variety of tissues. Here we report the ability of the Sleeping Beauty transposon to act as a somatic insertional mutagen to identify genes involved in solid tumour formation. A Sleeping Beauty transposon, engineered to elicit loss-of-function or gain-of-function mutations, transposed in all somatic tissues tested and accelerated tumour formation in mice predisposed to cancer. Cloning transposon insertion sites from these tumours revealed the presence of common integration sites, at known and candidate cancer genes, similar to those observed in retroviral mutagenesis screens. Sleeping Beauty is a new tool for unbiased, forward genetic screens for cancer genes in vivo.


Molecular Therapy | 2003

Gene transfer into genomes of human cells by the sleeping beauty transposon system.

Aron M. Geurts; Ying Yang; Karl J. Clark; Geyi Liu; Zongbin Cui; Adam J. Dupuy; Jason B. Bell; David A. Largaespada; Perry B. Hackett

The Sleeping Beauty (SB) transposon system, derived from teleost fish sequences, is extremely effective at delivering DNA to vertebrate genomes, including those of humans. We have examined several parameters of the SB system to improve it as a potential, nonviral vector for gene therapy. Our investigation centered on three features: the carrying capacity of the transposon for efficient integration into chromosomes of HeLa cells, the effects of overexpression of the SB transposase gene on transposition rates, and improvements in the activity of SB transposase to increase insertion rates of transgenes into cellular chromosomes. We found that SB transposons of about 6 kb retained 50% of the maximal efficiency of transposition, which is sufficient to deliver 70-80% of identified human cDNAs with appropriate transcriptional regulatory sequences. Overexpression inhibition studies revealed that there are optimal ratios of SB transposase to transposon for maximal rates of transposition, suggesting that conditions of delivery of the two-part transposon system are important for the best gene-transfer efficiencies. We further refined the SB transposase to incorporate several amino acid substitutions, the result of which led to an improved transposase called SB11. With SB11 we are able to achieve transposition rates that are about 100-fold above those achieved with plasmids that insert into chromosomes by random recombination. With the recently described improvements to the transposon itself, the SB system appears to be a potential gene-transfer tool for human gene therapy.


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Science | 2009

A transposon-based genetic screen in mice identifies genes altered in colorectal cancer

Timothy K. Starr; Raha Allaei; Kevin A. T. Silverstein; Rodney Staggs; Aaron L. Sarver; Tracy L. Bergemann; Mihir Gupta; M. Gerard O'Sullivan; Ilze Matise; Adam J. Dupuy; Lara S. Collier; Scott Powers; Ann L. Oberg; Yan W. Asmann; Stephen N. Thibodeau; Lino Tessarollo; Neal G. Copeland; Nancy A. Jenkins; Robert T. Cormier; David A. Largaespada

Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.


Nature Genetics | 1999

Leukaemia disease genes: Large-scale cloning and pathway predictions

Jiayin Li; Haifa Shen; Karen L. Himmel; Adam J. Dupuy; David A. Largaespada; Takuro Nakamura; John D. Shaughnessy; Nancy A. Jenkins; Neal G. Copeland

Retroviral insertional mutagenesis in BXH2 and AKXD recombinant inbred mice induces a high incidence of myeloid or B- and T-cell leukaemia and the proviral integration sites in the leukaemias provide powerful genetic tags for disease gene identification. Some of the disease genes identified by proviral tagging are also associated with human disease, validating this approach for human disease gene identification. Although many leukaemia disease genes have been identified over the years, many more remain to be cloned. Here we describe an inverse PCR (IPCR) method for proviral tagging that makes use of automated DNA sequencing and the genetic tools provided by the Mouse Genome Project, which increases the throughput for disease gene identification. We also use this IPCR method to clone and analyse more than 400 proviral integration sites from AKXD and BXH2 leukaemias and, in the process, identify more than 90 candidate disease genes. Some of these genes function in pathways already implicated in leukaemia, whereas others are likely to define new disease pathways. Our studies underscore the power of the mouse as a tool for gene discovery and functional genomics.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mammalian germ-line transgenesis by transposition

Adam J. Dupuy; Karl J. Clark; Corey M. Carlson; Sabine Fritz; Ann E. Davidson; Karra M. Markley; Ken Finley; Colin F. Fletcher; Stephen C. Ekker; Perry B. Hackett; Sandra Horn; David A. Largaespada

Transposons have been used in invertebrates for transgenesis and insertional mutagens in genetic screens. We tested a functional transposon called Sleeping Beauty in the one-cell mouse embryo. In this report, we describe experiments in which transposon vectors were injected into one-cell mouse embryos with mRNA expressing the SB10 transposase enzyme. Molecular evidence of transposition was obtained by cloning of insertion sites from multiple transgenic mice produced by SB10 mRNA/transposon coinjection. We also demonstrate germ-line transmission and expression from transposed elements. This technique has promise as a germ-line transgenesis method in other vertebrate species and for insertional mutagenesis in the mouse.


Nature Biotechnology | 2009

A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma

Vincent W. Keng; Augusto Villanueva; Derek Y. Chiang; Adam J. Dupuy; Barbara J. Ryan; Ilze Matise; Kevin A. T. Silverstein; Aaron L. Sarver; Timothy K. Starr; Keiko Akagi; Lino Tessarollo; Lara S. Collier; Scott Powers; Scott W. Lowe; Nancy A. Jenkins; Neal G. Copeland; Josep M. Llovet; David A. Largaespada

We describe a system that permits conditional mobilization of a Sleeping Beauty (SB) transposase allele by Cre recombinase to induce cancer specifically in a tissue of interest. To demonstrate its potential for developing tissue-specific models of cancer in mice, we limit SB transposition to the liver by placing Cre expression under the control of an albumin enhancer/promoter sequence and screen for hepatocellular carcinoma (HCC)–associated genes. From 8,060 nonredundant insertions cloned from 68 tumor nodules and comparative analysis with data from human HCC samples, we identify 19 loci strongly implicated in causing HCC. These encode genes, such as EGFR and MET, previously associated with HCC and others, such as UBE2H, that are potential new targets for treating this neoplasm. Our system, which could be modified to drive transposon-based insertional mutagenesis wherever tissue-specific Cre expression is possible, promises to enhance understanding of cancer genomes and identify new targets for therapeutic development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma

Karen M. Mann; Jerrold M. Ward; Christopher Chin Kuan Yew; Anne N. Kovochich; David W. Dawson; Michael A. Black; Benjamin T. Brett; Todd Sheetz; Adam J. Dupuy; David K. Chang; Andrew V. Biankin; Nicola Waddell; Karin S. Kassahn; Sean M. Grimmond; Alistair G. Rust; David J. Adams; Nancy A. Jenkins; Neal G. Copeland

Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.


Cancer Research | 2009

A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice.

Adam J. Dupuy; Laura M. Rogers; Jinsil Kim; Kishore Nannapaneni; Timothy K. Starr; Pentao Liu; David A. Largaespada; Todd E. Scheetz; Nancy A. Jenkins; Neal G. Copeland

Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty (SB) transposon system to model hematopoietic malignancies in mice. Here, we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBase(LsL), that allows the restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with an Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/chicken beta-actin promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of more than 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.

Collaboration


Dive into the Adam J. Dupuy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. Jenkins

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Neal G. Copeland

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David K. Meyerholz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge