Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam K. Glaser is active.

Publication


Featured researches published by Adam K. Glaser.


Nature Biomedical Engineering | 2017

Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens

Adam K. Glaser; Nicholas P. Reder; Ye Chen; Erin F. McCarty; Chengbo Yin; Linpeng Wei; Yu Wang; Lawrence D. True; Jonathan T. C. Liu

For the 1.7 million patients per year in the U.S. who receive a new cancer diagnosis, treatment decisions are largely made after a histopathology exam. Unfortunately, the gold standard of slide-based microscopic pathology suffers from high inter-observer variability and limited prognostic value due to sampling limitations and the inability to visualize tissue structures and molecular targets in their native 3D context. Here, we show that an open-top light-sheet microscope optimized for non-destructive slide-free pathology of clinical specimens enables the rapid imaging of intact tissues at high resolution over large 2D and 3D fields of view, with the same level of detail as traditional pathology. We demonstrate the utility of this technology for various applications: wide-area surface microscopy to triage surgical specimens (with ~200 μm surface irregularities), rapid intraoperative assessment of tumour-margin surfaces (12.5 sec/cm2), and volumetric assessment of optically cleared core–needle biopsies (1 mm in diameter, 2 cm in length). Light-sheet microscopy can be a versatile tool for both rapid surface microscopy and deep volumetric microscopy of human specimens.


Cancer Research | 2017

Raman-Encoded Molecular Imaging with Topically Applied SERS Nanoparticles for Intraoperative Guidance of Lumpectomy

Yu “Winston” Wang; Nicholas P. Reder; Soyoung Kang; Adam K. Glaser; Qian Yang; Matthew A. Wall; Sara H. Javid; Suzanne M. Dintzis; Jonathan T. C. Liu

Intraoperative identification of carcinoma at lumpectomy margins would enable reduced re-excision rates, which are currently as high as 20% to 50%. Although imaging of disease-associated biomarkers can identify malignancies with high specificity, multiplexed imaging of such biomarkers is necessary to detect molecularly heterogeneous carcinomas with high sensitivity. We have developed a Raman-encoded molecular imaging (REMI) technique in which targeted nanoparticles are topically applied on excised tissues to enable rapid visualization of a multiplexed panel of cell surface biomarkers at surgical margin surfaces. A first-ever clinical study was performed in which 57 fresh specimens were imaged with REMI to simultaneously quantify the expression of four biomarkers HER2, ER, EGFR, and CD44. Combined detection of these biomarkers enabled REMI to achieve 89.3% sensitivity and 92.1% specificity for the detection of breast carcinoma. These results highlight the sensitivity and specificity of REMI to detect biomarkers in freshly resected tissue, which has the potential to reduce the rate of re-excision procedures in cancer patients. Cancer Res; 77(16); 4506-16. ©2017 AACR.


Biomedical Optics Express | 2016

Assessing the imaging performance of light sheet microscopies in highly scattering tissues

Adam K. Glaser; Yu “Winston” Wang; Jonathan T. C. Liu

Light sheet microscopy (LSM) has emerged as an optical-imaging method for high spatiotemporal volumetric imaging of relatively transparent samples. While this capability has allowed the technique to be highly impactful in fields such as developmental biology, applications involving highly scattering thick tissues have been largely unexplored. Herein, we employ Monte Carlo simulations to explore the use of LSM for imaging turbid media. In particular, due to its similarity to dual-axis confocal (DAC) microscopy, we compare LSM performance to point-scanned (PS-DAC) and line-scanned (LS-DAC) dual-axis confocal microscopy techniques that have been previously shown to produce high-quality images at round-trip optical lengths of ~9 - 10 and ~3 - 4 respectively. The results of this study indicate that LSM using widefield collection (WF-LSM) provides comparable performance to LS-DAC in thick tissues, due to the fact that they both utilize an illumination beam focused in one dimension (i.e. a line or sheet). On the other hand, LSM using confocal line detection (CL-LSM) is more analogous to PS-DAC microscopy, in which the illumination beam is focused in two dimensions to a point. The imaging depth of LSM is only slightly inferior to DAC (~2 - 3 and ~6 - 7 optical lengths for WF-LSM and CL-LSM respectively) due to the use of a lower numerical aperture (NA) illumination beam for extended imaging along the illumination axis. Therefore, we conclude that the ability to image deeply is dictated most by the confocality of the microscope technique. In addition, we find that imaging resolution is mostly dependent on the collection NA, and is relatively invariant to imaging depth in a homogeneous scattering medium. Our results indicate that superficial imaging of highly scattering tissues using light sheet microscopy is possible.


Biomedical Optics Express | 2016

Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology.

Chengbo Yin; Adam K. Glaser; S. Y. Leigh; Ye Chen; Linpeng Wei; P. C. S. Pillai; M. C. Rosenberg; Sanjeewa Abeytunge; Gary Peterson; C. Glazowski; Nader Sanai; Michael J. Mandella; Milind Rajadhyaksha; Jonathan T. C. Liu

There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device.


Optica | 2016

Fractal propagation method enables realistic optical microscopy simulations in biological tissues

Adam K. Glaser; Ye Chen; Jonathan T. C. Liu

Current simulation methods for light transport in biological media have limited efficiency and realism when applied to three-dimensional microscopic light transport in biological tissues with refractive heterogeneities. We describe here a technique which combines a beam propagation method valid for modeling light transport in media with weak variations in refractive index, with a fractal model of refractive index turbulence. In contrast to standard simulation methods, this fractal propagation method (FPM) is able to accurately and efficiently simulate the diffraction effects of focused beams, as well as the microscopic heterogeneities present in tissue that result in scattering, refractive beam steering, and the aberration of beam foci. We validate the technique and the relationship between the FPM model parameters and conventional optical parameters used to describe tissues, and also demonstrate the methods flexibility and robustness by examining the steering and distortion of Gaussian and Bessel beams in tissue with comparison to experimental data. We show that the FPM has utility for the accurate investigation and optimization of optical microscopy methods such as light-sheet, confocal, and nonlinear microscopy.


IEEE Journal of Selected Topics in Quantum Electronics | 2016

Surgical Guidance via Multiplexed Molecular Imaging of Fresh Tissues Labeled With SERS-Coded Nanoparticles

Yu Wang; Soyoung Kang; Josh D. Doerksen; Adam K. Glaser; Jonathan T. C. Liu

The imaging of dysregulated cell-surface receptors (or biomarkers) is a potential means of identifying the presence of cancer with high sensitivity and specificity. However, due to heterogeneities in the expression of protein biomarkers in tumors, molecular imaging technologies should ideally be capable of visualizing a multiplexed panel of cancer biomarkers. Recently, surface-enhanced Raman-scattering (SERS) nanoparticles (NPs) have attracted wide interest due to their potential for sensitive and multiplexed biomarker detection. In this review, we focus on the most recent advances in tumor imaging using SERS-coded NPs. A brief introduction of the structure and optical properties of SERS NPs is provided, followed by a detailed discussion of key imaging issues such as the administration of NPs in tissue (topical versus systemic), the optical configuration and imaging approach of Raman imaging systems, spectral demultiplexing methods for quantifying NP concentrations, and the disambiguation of specific versus nonspecific sources of contrast through ratiometric imaging of targeted and untargeted (control) NP pairs. Finally, future challenges and directions are briefly outlined.


Journal of Biophotonics | 2017

Bessel‐beam illumination in dual‐axis confocal microscopy mitigates resolution degradation caused by refractive heterogeneities

Ye Chen; Adam K. Glaser; Jonathan T. C. Liu

One of the main challenges for laser-scanning microscopy of biological tissues with refractive heterogeneities is the degradation in spatial resolution that occurs as a result of beam steering and distortion. This challenge is particularly significant for dual-axis confocal (DAC) microscopy, which achieves improved spatial-filtering and optical-sectioning performance over traditional confocal microscopy through off-axis illumination and collection of light with low-numerical aperture (NA) beams that must intersect precisely at their foci within tissues. DAC microscope image quality is sensitive to positional changes and distortions of these illumination- and collection-beam foci. Previous studies have shown that Bessel beams display improved positional stability and beam quality than Gaussian beams when propagating through tissues with refractive heterogeneities, which suggests that Bessel-beam illumination may enhance DAC microscopy of such tissues. Here, we utilize both Gaussian and Bessel illumination in a point-scanned DAC microscope and quantify the resultant degradation in resolution when imaging within heterogeneous optical phantoms and fresh tissues. Results indicate that DAC microscopy with Bessel illumination exhibits reduced resolution degradation from microscopic tissue heterogeneities compared to DAC microscopy with conventional Gaussian illumination.


Proceedings of SPIE | 2016

Using a reflectance-based correction on Cherenkov images to strengthen correlation with radiation surface dose in an anthropomorphic breast phantom

Jacqueline M. Andreozzi; Rongxiao Zhang; Adam K. Glaser; David J. Gladstone; Lesley A. Jarvis; Brian W. Pogue

Cherenkov imaging during radiotherapy is a method by which an optical analog for the high-energy radiation beam can be observed directly on the surface of the patient. While simple geometries and volumes demonstrate a strong correlation between Cherenkov emission intensity and surface dose, in vivo data collected from 14 whole-breast patients has not exhibited the same correlation. The purpose of this anthropomorphic phantom study was to investigate a new method for improving the in vivo correlation based on a pixel-by-pixel correction from a reference reflectance image. The pixel intensities in Cherenkov images of a phantom were correlated with the surface dose measured from thermoluminescent dosimeters (TLDs) placed on the phantom’s surface. Because the phantom had homogeneous optical properties, results show a no appreciable change in correlation between Cherenkov intensity and surface dose when using the correction method on images of an anthropomorphic solid silicone phantom, nor a change in the dose fall-off at the edges of the phantom. The method may improve correlation with in vivo data.


Scientific Reports | 2018

Multidirectional digital scanned light-sheet microscopy enables uniform fluorescence excitation and contrast-enhanced imaging

Adam K. Glaser; Ye Chen; Chengbo Yin; Linpeng Wei; Lindsey A. Barner; Nicholas P. Reder; Jonathan T. C. Liu

Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method for rapid and optically efficient 3D microscopy. Initial LSFM designs utilized a static sheet of light, termed selective plane illumination microscopy (SPIM), which exhibited shadowing artifacts and deteriorated contrast due to light scattering. These issues have been addressed, in part, by multidirectional selective plane illumination microscopy (mSPIM), in which rotation of the light sheet is used to mitigate shadowing artifacts, and digital scanned light-sheet microscopy (DSLM), in which confocal line detection is used to reject scattered light. Here we present a simple and passive multidirectional digital scanned light-sheet microscopy (mDSLM) architecture that combines the benefits of mSPIM and DSLM. By utilizing an elliptical Gaussian beam with increased angular diversity in the imaging plane, mDSLM provides mitigation of shadowing artifacts and contrast-enhanced imaging of fluorescently labeled samples.


Proceedings of SPIE | 2017

A handheld MEMS-based line-scanned dual-axis confocal microscope for early cancer detection and surgical guidance (Conference Presentation)

Ye Chen; Chengbo Yin; Linpeng Wei; Adam K. Glaser; Sanjee Abeytunge; Gary Peterson; Michael J. Mandella; Nader Sanai; Milind Rajadhyaksha; Jonathan T. C. Liu

Considerable efforts have been recently undertaken to develop miniature optical-sectioning microscopes for in vivo microendoscopy and point-of-care pathology. These devices enable in vivo interrogation of disease as a real-time and noninvasive alternative to gold-standard histopathology, and therefore could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Regardless of the specific modality, various trade-offs in size, speed, field of view, resolution, contrast, and sensitivity are necessary to optimize a device for a particular application. Here, a miniature MEMS-based line-scanned dual-axis confocal (LS-DAC) microscope, with a 12-mm diameter distal tip, has been developed for point-of-care pathology. The dual-axis architecture has demonstrated superior rejection of out-of-focus and multiply scattered photons compared to a conventional single-axis confocal configuration. The use of line scanning enables fast frame rates (≥15 frames/sec), which mitigates motion artifacts of a handheld device during clinical use. We have developed a method to actively align the illumination and collection beams in this miniature LS-DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo application, enables the device to achieve an axial and lateral resolution of 2.0 and 1.1 microns, respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate that this high-speed LS-DAC microscope can achieve high-contrast imaging of fluorescently labeled tissues with sufficient sensitivity for applications such as oral cancer detection and guiding brain-tumor resections.

Collaboration


Dive into the Adam K. Glaser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Chen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Nicholas P. Reder

University of Washington Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chengbo Yin

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Linpeng Wei

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Brian W. Pogue

Dartmouth–Hitchcock Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge