Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Lacy-Hulbert is active.

Publication


Featured researches published by Adam Lacy-Hulbert.


Nature Immunology | 2010

CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer

Cameron R. Stewart; Lynda M. Stuart; Kim Wilkinson; Janine M. van Gils; Jiusheng Deng; Annett Halle; Katey J. Rayner; Laurent Boyer; Ruiqin Zhong; William A. Frazier; Adam Lacy-Hulbert; Joseph El Khoury; Douglas T. Golenbock; Kathryn J. Moore

In atherosclerosis and Alzheimers disease, deposition of the altered self components oxidized low-density lipoprotein (LDL) and amyloid-β triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and amyloid-β trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this newly identified heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and amyloid-β stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by coreceptor signaling events.


Nature Medicine | 2013

Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs.

Neil C. Henderson; Thomas D. Arnold; Yoshio Katamura; Marilyn M. Giacomini; Juan Rodríguez; Joseph H. McCarty; Antonella Pellicoro; Elisabeth Raschperger; Christer Betsholtz; Peter Ruminski; David W. Griggs; Michael J. Prinsen; Jacquelyn J. Maher; John P. Iredale; Adam Lacy-Hulbert; Ralf H. Adams; Dean Sheppard

Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are believed to be the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not been developed. We report that Cre under control of the promoter of Pdgfrb (Pdgfrb-Cre) inactivates loxP-flanked genes in mouse HSCs with high efficiency. We used this system to delete the gene encoding αv integrin subunit because various αv-containing integrins have been suggested as central mediators of fibrosis in multiple organs. Such depletion protected mice from carbon tetrachloride–induced hepatic fibrosis, whereas global loss of β3, β5 or β6 integrins or conditional loss of β8 integrins in HSCs did not. We also found that Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of the αv integrin subunit using this system was protective in other models of organ fibrosis, including pulmonary and renal fibrosis. Pharmacological blockade of αv-containing integrins by a small molecule (CWHM 12) attenuated both liver and lung fibrosis, including in a therapeutic manner. These data identify a core pathway that regulates fibrosis and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.


Development | 2004

Selective ablation of αv integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death

Joseph H. McCarty; Adam Lacy-Hulbert; Alain Charest; Roderick T. Bronson; Denise Crowley; David E. Housman; John Savill; Jürgen Roes; Richard O. Hynes

Mouse embryos genetically null for all αv integrins develop intracerebral hemorrhage owing to defective interactions between blood vessels and brain parenchymal cells. Here, we have used conditional knockout technology to address whether the cerebral hemorrhage is due to primary defects in vascular or neural cell types. We show that ablating αv expression in the vascular endothelium has no detectable effect on cerebral blood vessel development, whereas deletion of αv expression in central nervous system glial cells leads to embryonic and neonatal cerebral hemorrhage. Conditional deletion of αv integrin in both central nervous system glia and neurons also leads to cerebral hemorrhage, but additionally to severe neurological defects. Approximately 30% of these mutants develop seizures and die by 4 weeks of age. The remaining mutants survive for several months, but develop axonal deterioration in the spinal cord and cerebellum, leading to ataxia and loss of hindlimb coordination. Collectively, these data provide evidence that αv integrins on embryonic central nervous system neural cells, particularly glia, are necessary for proper cerebral blood vessel development, and also reveal a novel function for αv integrins expressed on axons in the postnatal central nervous system.


Nature Immunology | 2012

The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques

Janine M. van Gils; Merran C Derby; Luciana Rodrigues Fernandes; Bhama Ramkhelawon; Tathagat Dutta Ray; Katey J. Rayner; Sajesh Parathath; Emilie Distel; Jessica L. Feig; Jacqueline I. Alvarez-Leite; Alistair Rayner; Thomas O. McDonald; Kevin D. O'Brien; Lynda M. Stuart; Edward A. Fisher; Adam Lacy-Hulbert; Kathryn J. Moore

Atherosclerotic plaque formation is fueled by the persistence of lipid-laden macrophages in the artery wall. The mechanisms by which these cells become trapped, thereby establishing chronic inflammation, remain unknown. Here we found that netrin-1, a neuroimmune guidance cue, was secreted by macrophages in human and mouse atheroma, where it inactivated the migration of macrophages toward chemokines linked to their egress from plaques. Acting via its receptor, UNC5b, netrin-1 inhibited the migration of macrophages directed by the chemokines CCL2 and CCL19, activation of the actin-remodeling GTPase Rac1 and actin polymerization. Targeted deletion of netrin-1 in macrophages resulted in much less atherosclerosis in mice deficient in the receptor for low-density lipoprotein and promoted the emigration of macrophages from plaques. Thus, netrin-1 promoted atherosclerosis by retaining macrophages in the artery wall. Our results establish a causative role for negative regulators of leukocyte migration in chronic inflammation.


Development | 2010

Endothelial α5 and αv integrins cooperate in remodeling of the vasculature during development

Arjan van der Flier; Kwabena Badu-Nkansah; Charles A. Whittaker; Denise Crowley; Roderick T. Bronson; Adam Lacy-Hulbert; Richard O. Hynes

Integrin cell adhesion receptors and fibronectin, one of their extracellular matrix ligands, have been demonstrated to be important for angiogenesis using functional perturbation studies and complete knockout mouse models. Here, we report on the roles of the α5 and αv integrins, which are the major endothelial fibronectin receptors, in developmental angiogenesis. We generated an integrin α5-floxed mouse line and ablated α5 integrin in endothelial cells. Unexpectedly, endothelial-specific knockout of integrin α5 has no obvious effect on developmental angiogenesis. We provide evidence for genetic interaction between mutations in integrin α5 and αv and for overlapping functions and compensation between these integrins and perhaps others. Nonetheless, in embryos lacking both α5 and αv integrins in their endothelial cells, initial vasculogenesis and angiogenesis proceed normally, at least up to E11.5, including the formation of apparently normal embryonic vasculature and development of the branchial arches. However, in the absence of endothelial α5 and αv integrins, but not of either alone, there are extensive defects in remodeling of the great vessels and heart resulting in death at ~E14.5. We also found that fibronectin assembly is somewhat affected in integrin α5 knockout endothelial cells and markedly reduced in integrin α5/αv double-knockout endothelial cell lines. Therefore, neither α5 nor αv integrins are required in endothelial cells for initial vasculogenesis and angiogenesis, although they are required for remodeling of the heart and great vessels. These integrins on other cells, and/or other integrins on endothelial cells, might contribute to fibronectin assembly and vascular development.


Nature Immunology | 2013

Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

Anna Sokolovska; Christine E. Becker; W. K. Eddie Ip; Vijay A. K. Rathinam; Matthew Brudner; Nicholas Paquette; Antoine Tanne; Sivapriya Kailasan Vanaja; Kathryn J. Moore; Katherine A. Fitzgerald; Adam Lacy-Hulbert; Lynda M. Stuart

Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.


Journal of Immunology | 2010

Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus

W. K. Eddie Ip; Anna Sokolovska; Guillaume M. Charriere; Laurent Boyer; Stephanie Dejardin; Michael P. Cappillino; L. Michael Yantosca; Kazue Takahashi; Kathryn J. Moore; Adam Lacy-Hulbert; Lynda M. Stuart

Innate immunity is vital for protection from microbes and is mediated by humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells (e.g., macrophages). After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. In this study, we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate an optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production, bacteria must be engulfed and delivered into acidic phagosomes where acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to S. aureus can be rescued by the addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together, these observations delineate the interdependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to S. aureus.


Immunity | 2011

Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway.

Laurent Boyer; Lorin Magoc; Stephanie Dejardin; Michael P. Cappillino; Nicholas Paquette; Charlotte Hinault; Guillaume M. Charriere; W.K. Eddie Ip; Shannon Fracchia; Elizabeth J. Hennessy; Deniz Erturk-Hasdemir; Jean-Marc Reichhart; Neal S. Silverman; Adam Lacy-Hulbert; Lynda M. Stuart

Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential.


Nature Immunology | 2013

Inflammation-induced effector CD4+ T cell interstitial migration is alpha-v integrin dependent

Michael G. Overstreet; Alison Gaylo; Bastian R. Angermann; Angela Hughson; Young-Min Hyun; Kris Lambert; Mridu Acharya; Alison C. Billroth-MacLurg; Alexander F. Rosenberg; David J. Topham; Hideo Yagita; Minsoo Kim; Adam Lacy-Hulbert; Martin Meier-Schellersheim; Deborah J. Fowell

Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues appears to be integrin-independent actin-myosin based, during inflammation changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that T cell interstitial motility was critically dependent on RGD-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to increased αv integrin expression on effector CD4+ T cells. Using intravital multi-photon imaging, we found that CD4+ T cell motility was dependent on αv expression. Selective αv blockade or knockdown arrested TH1 motility in the inflamed tissue and attenuated local effector function. These data show a context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity.Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues seems to be integrin independent and based on actomyosin-mediated protrusion and contraction, during inflammation, changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that the interstitial motility of T cells was critically dependent on Arg-Gly-Asp (RGD)-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to higher expression of integrin αV on effector CD4+ T cells. By intravital multiphoton imaging, we found that the motility of CD4+ T cells was dependent on αV expression. Selective blockade or knockdown of αV arrested T helper type 1 (TH1) cells in the inflamed tissue and attenuated local effector function. Our data demonstrate context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis Dysregulation Under Proatherosclerotic Conditions

Janine M. van Gils; Bhama Ramkhelawon; Luciana Rodrigues Fernandes; Merran C. Stewart; Liang Guo; Tara Seibert; Gustavo B. Menezes; Denise Carmona Cara; Camille Chow; T. Bernard Kinane; Edward A. Fisher; Mercedes Balcells; Jacqueline I. Alvarez-Leite; Adam Lacy-Hulbert; Kathryn J. Moore

Objective—Emerging evidence suggests that neuronal guidance cues, typically expressed during development, are involved in both physiological and pathological immune responses. We hypothesized that endothelial expression of such guidance cues may regulate leukocyte trafficking into the vascular wall during atherogenesis. Approach and Results—We demonstrate that members of the netrin, semaphorin, and ephrin family of guidance molecules are differentially regulated under conditions that promote or protect from atherosclerosis. Netrin-1 and semaphorin3A are expressed by coronary artery endothelial cells and potently inhibit chemokine-directed migration of human monocytes. Endothelial expression of these negative guidance cues is downregulated by proatherogenic factors, including oscillatory shear stress and proinflammatory cytokines associated with monocyte entry into the vessel wall. Furthermore, we show using intravital microscopy that inhibition of netrin-1 or semaphorin3A using blocking peptides increases leukocyte adhesion to the endothelium. Unlike netrin-1 and semaphorin3A, the guidance cue ephrinB2 is upregulated under proatherosclerotic flow conditions and functions as a chemoattractant, increasing leukocyte migration in the absence of additional chemokines. Conclusions—The concurrent regulation of negative and positive guidance cues may facilitate leukocyte infiltration of the endothelium through a balance between chemoattraction and chemorepulsion. These data indicate a previously unappreciated role for axonal guidance cues in maintaining the endothelial barrier and regulating leukocyte trafficking during atherogenesis.

Collaboration


Dive into the Adam Lacy-Hulbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph H. McCarty

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard O. Hynes

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise Crowley

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge