Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Sokolovska is active.

Publication


Featured researches published by Anna Sokolovska.


Nature Immunology | 2013

Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

Anna Sokolovska; Christine E. Becker; W. K. Eddie Ip; Vijay A. K. Rathinam; Matthew Brudner; Nicholas Paquette; Antoine Tanne; Sivapriya Kailasan Vanaja; Kathryn J. Moore; Katherine A. Fitzgerald; Adam Lacy-Hulbert; Lynda M. Stuart

Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.


Journal of Immunology | 2010

Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus

W. K. Eddie Ip; Anna Sokolovska; Guillaume M. Charriere; Laurent Boyer; Stephanie Dejardin; Michael P. Cappillino; L. Michael Yantosca; Kazue Takahashi; Kathryn J. Moore; Adam Lacy-Hulbert; Lynda M. Stuart

Innate immunity is vital for protection from microbes and is mediated by humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells (e.g., macrophages). After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. In this study, we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate an optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production, bacteria must be engulfed and delivered into acidic phagosomes where acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to S. aureus can be rescued by the addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together, these observations delineate the interdependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to S. aureus.


Journal of Biological Chemistry | 2013

Dectin-1 Activation Controls Maturation of β-1,3-Glucan-containing Phagosomes

Michael K. Mansour; Jenny M. Tam; Nida S. Khan; Michael W. Seward; Peter J. Davids; Sravanthi Puranam; Anna Sokolovska; David B. Sykes; Zeina Dagher; Christine E. Becker; Antoine Tanne; Jennifer L. Reedy; Lynda M. Stuart; Jatin M. Vyas

Background: Dectin-1 is able to recognize and phagocytose the fungal carbohydrate, β-1,3-glucan, but its contribution to phagosomal maturation has not been explored. Results: Dectin-1-dependent Syk activation promotes phagolysosomal fusion and acidification. Conclusion: Dectin-1-dependent Syk-activation permits egress of early phagosomes to mature phagolysosomes. Significance: The surface recognition receptor, Dectin-1 shapes anti-fungal responses by controlling fungal phagosome maturation. Elimination of fungal pathogens by phagocytes requires phagosome maturation, a process that involves the recruitment and fusion of intracellular proteins. The role of Dectin-1, a β-1,3-glucan receptor, critical for fungal recognition and triggering of Th17 responses, to phagosomal maturation has not been defined. We show that GFP-Dectin-1 translocates to the fungal phagosome, but its signal decays after 2 h. Inhibition of acidification results in retention of GFP-Dectin-1 to phagosome membranes highlighting the requirement for an acidic pH. Following β-1,3-glucan recognition, GFP-Dectin-1 undergoes tyrosine phosphorylation by Src kinases with subsequent Syk activation. Our results demonstrate that Syk is activated independently of intraphagosomal pH. Inhibition of Src or Syk results in prolonged retention of GFP-Dectin-1 to the phagosome signifying a link between Syk and intraphagosomal pH. β-1,3-glucan phagosomes expressing a signaling incompetent Dectin-1 failed to mature as demonstrated by prolonged Dectin-1 retention, presence of Rab5B, failure to acquire LAMP-1 and inability to acidify. Phagosomes containing Candida albicans also require Dectin-1-dependent Syk activation for phagosomal maturation. Taken together, these results support a model where Dectin-1 not only controls internalization of β-1,3-glucan containing cargo and triggers proinflammatory cytokines, but also acts as a master regulator for subsequent phagolysosomal maturation through Syk activation.


The Journal of Infectious Diseases | 2014

Dectin-1–Dependent LC3 Recruitment to Phagosomes Enhances Fungicidal Activity in Macrophages

Jenny M. Tam; Michael K. Mansour; Nida S. Khan; Michael W. Seward; Sravanthi Puranam; Antoine Tanne; Anna Sokolovska; Christine E. Becker; Mridu Acharya; Michelle A. Baird; Augustine M. K. Choi; Michael W. Davidson; Brahm H. Segal; Adam Lacy-Hulbert; Lynda M. Stuart; Ramnik J. Xavier; Jatin M. Vyas

Autophagy has been postulated to play role in mammalian host defense against fungal pathogens, although the molecular details remain unclear. Here, we show that primary macrophages deficient in the autophagic factor LC3 demonstrate diminished fungicidal activity but increased cytokine production in response to Candida albicans stimulation. LC3 recruitment to fungal phagosomes requires activation of the fungal pattern receptor dectin-1. LC3 recruitment to the phagosome also requires Syk signaling but is independent of all activity by Toll-like receptors and does not require the presence of the adaptor protein Card9. We further demonstrate that reactive oxygen species generation by NADPH oxidase is required for LC3 recruitment to the fungal phagosome. These observations directly link LC3 to the inflammatory pathway against C. albicans in macrophages.


PLOS ONE | 2013

Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors

Matthew Brudner; Marshall Karpel; Calli Lear; Li Chen; L. Michael Yantosca; Corinne Scully; Ashish Sarraju; Anna Sokolovska; M. Reza Zariffard; Damon P. Eisen; Bruce A. Mungall; Darrell N. Kotton; Amel Omari; I-Chueh Huang; Michael Farzan; Kazue Takahashi; Lynda M. Stuart; Gregory L. Stahl; Alan Ezekowitz; Gregory T. Spear; Gene G. Olinger; Emmett V. Schmidt; Ian C. Michelow

Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes.


Journal of Biological Chemistry | 2010

Identification of Drosophila Yin and PEPT2 as Evolutionarily Conserved Phagosome-associated Muramyl Dipeptide Transporters

Guillaume M. Charriere; Wk Eddie Ip; Stephanie Dejardin; Laurent Boyer; Anna Sokolovska; Michael P. Cappillino; Bobby J. Cherayil; Daniel K. Podolsky; Koichi S. Kobayashi; Neal S. Silverman; Adam Lacy-Hulbert; Lynda M. Stuart

NOD2 (nucleotide-binding oligomerization domain containing 2) is an important cytosolic pattern recognition receptor that activates NF-κB and other immune effector pathways such as autophagy and antigen presentation. Despite its intracellular localization, NOD2 participates in sensing of extracellular microbes such as Staphylococcus aureus. NOD2 ligands similar to the minimal synthetic ligand muramyl dipeptide (MDP) are generated by internalization and processing of bacteria in hydrolytic phagolysosomes. However, how these derived ligands exit this organelle and access the cytosol to activate NOD2 is poorly understood. Here, we address how phagosome-derived NOD2 ligands access the cytosol in human phagocytes. Drawing on data from Drosophila phagosomes, we identify an evolutionarily conserved role of SLC15A transporters, Drosophila Yin and PEPT2, as MDP transporters in fly and human phagocytes, respectively. We show that PEPT2 is highly expressed by human myeloid cells. Ectopic expression of both Yin and PEPT2 increases the sensitivity of NOD2-dependent NF-κB activation. Additionally, we show that PEPT2 associates with phagosome membranes. Together, these data identify Drosophila Yin and PEPT2 as evolutionarily conserved phagosome-associated transporters that are likely to be of particular importance in delivery of bacteria-derived ligands generated in phagosomes to cytosolic sensors recruited to the vicinity of these organelles.


PLOS ONE | 2012

SHARPIN Is Essential for Cytokine Production, NF-κB Signaling, and Induction of Th1 Differentiation by Dendritic Cells

Zhe Wang; Anna Sokolovska; Rosemarie Seymour; John P. Sundberg; Harm HogenEsch

Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1) gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1) and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR) agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC) from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2) and MAPK11/12/13/14 (p38 MAP kinase isoforms) and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4+ T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response.


Current protocols in immunology | 2012

Measurement of Phagocytosis, Phagosome Acidification, and Intracellular Killing of Staphylococcus aureus

Anna Sokolovska; Christine E. Becker; Lynda M. Stuart

Phagocytes are an important part of host defense, playing a critical role in innate immune responses against pathogens and in the initiation of adaptive immunity. One of the main characteristics of these cells is their ability to recognize and internalize invading microorganisms into a phagosome. The internalized microbe is rapidly delivered into a mature phagolysosome where it is killed and degraded. However, numerous pathogens have evolved complex mechanisms to manipulate these intracellular organelles to establish a survival niche. Here, we describe several methods to assess important properties of phagosomes in macrophages, such as phagocytosis, acidification of the phagosome contents during the maturation process, and the ability of phagosomes to inactivate and kill pathogens. Phagocytosis and phagosome acidification assays are FACS‐based assays where labeled bacteria are used as probes to monitor internalization into a phagosome and to detect the pH of the phagosome environment. The killing assay is based on the counting of bacterial colonies after recovery of internalized bacteria from macrophages. Curr. Protoc. Immunol. 99:14.30.1‐14.30.12.


Pathogenetics | 2016

The Role of Autophagy-Related Proteins in Candida albicans Infections

Jenny M. Tam; Michael K. Mansour; Mridu Acharya; Anna Sokolovska; Allison K. Timmons; Adam Lacy-Hulbert; Jatin M. Vyas

Autophagy plays an important role in maintaining cell homeostasis by providing nutrients during periods of starvation and removing damaged organelles from the cytoplasm. A marker in the autophagic process is the reversible conjugation of LC3, a membrane scaffolding protein, to double membrane autophagosomes. Recently, a role for LC3 in the elimination of pathogenic bacteria and fungi, including Candida albicans (C. albicans), was demonstrated, but these organisms reside in single membrane phagosomes. This process is distinct from autophagy and is termed LC3-associated phagocytosis (LAP). This review will detail the hallmarks of LAP that distinguish it from classical autophagy and review the role of autophagy proteins in host response to C. albicans and other pathogenic fungi.


Cell | 2012

TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative Bacteria

Vijay A. K. Rathinam; Sivapriya Kailasan Vanaja; Lisa Waggoner; Anna Sokolovska; Christine E. Becker; Lynda M. Stuart; John M. Leong; Katherine A. Fitzgerald

Collaboration


Dive into the Anna Sokolovska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoine Tanne

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine A. Fitzgerald

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge