Adam S. Cockrell
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam S. Cockrell.
Molecular Therapy | 2008
Matthew Bayer; Boris Kantor; Adam S. Cockrell; Hong Ma; Brian Zeithaml; Xiangping Li; Thomas J. McCown; Tal Kafri
The feasibility of using nonintegrating lentiviral vectors has been demonstrated by recent studies showing their ability to maintain transgene expression both in vitro and in vivo. Furthermore, human immunodeficiency virus-1 (HIV-1) vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date, a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. In this study, we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vectors U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained.
Journal of Virology | 2014
Adam S. Cockrell; Kayla M. Peck; Boyd Yount; Sudhakar Agnihothram; Trevor Scobey; Nicole R. Curnes; Ralph S. Baric; Mark T. Heise
ABSTRACT Human dipeptidyl peptidase 4 (hDPP4) was recently identified as the receptor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection, suggesting that other mammalian DPP4 orthologs may also support infection. We demonstrate that mouse DPP4 cannot support MERS-CoV infection. However, employing mouse DPP4 as a scaffold, we identified two critical amino acids (A288L and T330R) that regulate species specificity in the mouse. This knowledge can support the rational design of a mouse-adapted MERS-CoV for rapid assessment of therapeutics.
Nature microbiology | 2017
Adam S. Cockrell; Boyd Yount; Trevor Scobey; Kara Jensen; Madeline G. Douglas; Anne Beall; Xian Chun Tang; Wayne A. Marasco; Mark T. Heise; Ralph S. Baric
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR–Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.
Journal of Virology | 2015
Kayla M. Peck; Adam S. Cockrell; Boyd Yount; Trevor Scobey; Ralph S. Baric; Mark T. Heise
ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development.
Current HIV Research | 2003
Adam S. Cockrell; Tal Kafri
The ability of lentiviral vectors to transduce and stably integrate their genomes into non-dividing cells was the major reason for the development of the HIV-1 based vector gene delivery system. The first VSV-G pseudotyped lentiviral vectors fulfilled these expectations by ferrying large genetic payloads to non-dividing cells in vitro and in vivo. Here we discuss advances in HIV-1 vector systems which lead to improvement in biosafety, transduction efficiency, longevity and regulation of transgene expression, and vector production. The successful use of the advanced HIV-1 based vector system opened new avenues in establishing transgenic animal models for basic research. Additionally, we describe accomplishments using HIV-1 based vectors to correct pathological courses of incurable diseases in preclinical animal models including Parkinsons disease and beta-thalassemia.
Human Gene Therapy | 2012
Valentino Piacentino; Carmelo A. Milano; Michael Bolanos; Jacob N. Schroder; Emily Messina; Adam S. Cockrell; Edward E. Jones; Ava Krol; Nenad Bursac; Lan Mao; Gayathri R. Devi; R. Jude Samulski; Dawn E. Bowles
Successful amelioration of cardiac dysfunction and heart failure through gene therapy approaches will require a transgene effective at attenuating myocardial injury, and subsequent remodeling, using an efficient and safe delivery vehicle. Our laboratory has established a well-curated, high-quality repository of human myocardial tissues that we use as a discovery engine to identify putative therapeutic transgene targets, as well as to better understand the molecular basis of human heart failure. By using this rare resource we were able to examine age- and sex-matched left ventricular samples from (1) end-stage failing human hearts and (2) nonfailing human hearts and were able to identify the X-linked inhibitor of apoptosis protein (XIAP) as a novel target for treating cardiac dysfunction. We demonstrate that XIAP is diminished in failing human hearts, indicating that this potent inhibitor of apoptosis may be central in protecting the human heart from cellular injury culminating in heart failure. Efforts to ameliorate heart failure through delivery of XIAP compelled the design of a novel adeno-associated viral (AAV) vector, termed SASTG, that achieves highly efficient transduction in mouse heart and in cultured neonatal rat cardiomyocytes. Increased XIAP expression achieved with the SASTG vector inhibits caspase-3/7 activity in neonatal cardiomyocytes after induction of apoptosis through three common cardiac stresses: protein kinase C-γ inhibition, hypoxia, or β-adrenergic receptor agonist. These studies demonstrate the potential benefit of XIAP to correct heart failure after highly efficient delivery to the heart with the rationally designed SASTG AAV vector.
Mbio | 2017
Vineet D. Menachery; Hugh D. Mitchell; Adam S. Cockrell; Lisa E. Gralinski; Boyd Yount; Rachel L. Graham; Eileen T. McAnarney; Madeline G. Douglas; Trevor Scobey; Anne Beall; Kenneth H. Dinnon; Jacob F. Kocher; Andrew E. Hale; Kelly G. Stratton; Katrina M. Waters; Ralph S. Baric
ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants. IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.
mSphere | 2017
Vineet D. Menachery; Lisa E. Gralinski; Hugh D. Mitchell; Kenneth H. Dinnon; Sarah R. Leist; Boyd Yount; Rachel L. Graham; Eileen T. McAnarney; Kelly G. Stratton; Adam S. Cockrell; Kari Debbink; Amy C. Sims; Katrina M. Waters; Ralph S. Baric
Coronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that effectively targets the highly conserved 2′O-MTase activity of CoVs for attenuation. With clear understanding of the IFN/IFIT (IFN-induced proteins with tetratricopeptide repeats)-based mechanism, NSP16 mutants provide a suitable target for a live attenuated vaccine platform, as well as therapeutic development for both current and future emergent CoV strains. Importantly, other approaches targeting other conserved pan-CoV functions have not yet proven effective against MERS-CoV, illustrating the broad applicability of targeting viral 2′O-MTase function across CoVs. ABSTRACT Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2′O-methyltransferase (2′O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2′O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures and in vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2′O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting. IMPORTANCE Coronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that effectively targets the highly conserved 2′O-MTase activity of CoVs for attenuation. With clear understanding of the IFN/IFIT (IFN-induced proteins with tetratricopeptide repeats)-based mechanism, NSP16 mutants provide a suitable target for a live attenuated vaccine platform, as well as therapeutic development for both current and future emergent CoV strains. Importantly, other approaches targeting other conserved pan-CoV functions have not yet proven effective against MERS-CoV, illustrating the broad applicability of targeting viral 2′O-MTase function across CoVs.
G3: Genes, Genomes, Genetics | 2017
Paul L. Maurizio; Martin T. Ferris; Gregory R. Keele; Darla R. Miller; Ginger D. Shaw; Alan C. Whitmore; Ande West; Clayton R. Morrison; Kelsey E. Noll; Kenneth S. Plante; Adam S. Cockrell; David W. Threadgill; Fernando Pardo-Manuel de Villena; Ralph S. Baric; Mark T. Heise; William Valdar
Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.
Annals of Translational Medicine | 2016
Adam S. Cockrell; Ralph S. Baric
Middle East respiratory syndrome coronavirus (MERS-CoV) is an ongoing emerging infectious disease across the Arabian Peninsula, with the majority of cases occurring in Saudi Arabia. Through September 23, 2016 the World Health Organization reported about 1,806 total cases, including 643 deaths from 27 countries (http://www.who.int/emergencies/mers-cov/en/). The disease is comprised of a lower respiratory infection wherein individuals exhibit pneumonia-like symptoms that often lead to multi-organ failure and death (1). In addition to close contact with infected camels, transmission from human-to-human most commonly occurs in the hospital setting through close contact between patients and hospital workers (1). MERS-CoV has also been isolated from objects within patient rooms including bed sheets, bed rails, and IV fluid hangers (2), which may all be potential sources of transmission. Several cases of MERS-CoV have been associated with travelers returning home from the Middle East and developing symptoms, including two cases of health care workers returning to the United States (3). The potential for global spread was recently illustrated by a South Korean national returning home from visiting the Arabian Peninsula in May, 2015, and initiating an outbreak that infected 186 people resulting in 20% mortality and a nationwide economic crisis (4). Nonetheless, MERS-CoV is not thought to be sustained in the human population through human-to-human transmission, but may instead be continuously re-introduced into the human population from a zoonotic source, most likely dromedary camels because of high seropositive rates in herds throughout the Middle East (5,6). As camels are integral to the Saudi Arabian culture and economy, nationwide culling of camel herds is not feasible. Consequently, camel vaccination is being considered (7); however, therapeutic strategies have primarily focused on interfering with MERS-CoV infection in humans (3,5).