Adelfo Escalante
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adelfo Escalante.
Microbial Cell Factories | 2008
Karla Xadany Cabral Martínez; Ramón de Anda; Georgina Hernández; Adelfo Escalante; Guillermo Gosset; Octavio T. Ramírez; Francisco Bolívar
BackgroundEscherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) are capable of coutilizing glucose and other carbon sources due to the absence of catabolite repression by glucose. In these strains, the lack of this important regulatory and transport system allows the coexistence of glycolytic and gluconeogenic pathways. Strains lacking PTS have been constructed with the goal of canalizing part of the phosphoenolpyruvate (PEP) not consumed in glucose transport to the aromatic pathway. The deletion of the ptsHIcrr operon inactivates PTS causing poor growth on this sugar; nonetheless, fast growing mutants on glucose have been isolated (PB12 strain). However, there are no reported studies concerning the growth potential of a PTS- strain in mixtures of different carbon sources to enhance the production of aromatics compounds.ResultsPB12 strain is capable of coutilizing mixtures of glucose-arabinose, glucose-gluconate and glucose-glycerol. This capacity increases its specific growth rate (μ) given that this strain metabolizes more moles of carbon source per unit time. The presence of plasmids pRW300aroGfbrand pCLtktA reduces the μ of strain PB12 in all mixtures of carbon sources, but enhances the productivity and yield of aromatic compounds, especially in the glucose-glycerol mixture, as compared to glucose or glycerol cultures. No acetate was detected in the glycerol and the glucose-glycerol batch fermentations.ConclusionDue to the lack of catabolite repression, PB12 strain carrying multicopy plasmids containing tktA and aroGfbrgenes is capable of coutilizing glucose and other carbon sources; this capacity, reduces its μ but increases the production of aromatic compounds.
Applied Microbiology and Biotechnology | 2012
Adelfo Escalante; Ania Salinas Cervantes; Guillermo Gosset; Francisco Bolívar
In Escherichia coli, the phosphoenolpyruvate–carbohydrate phosphotransferase system (PTS) is responsible for the transport and phosphorylation of sugars, such as glucose. PTS activity has a crucial role in the global signaling system that controls the preferential consumption of glucose over other carbon sources. When the cell is exposed to carbohydrate mixtures, the PTS prevents the expression of catabolic genes and activity of non-PTS sugars transport systems by carbon catabolite repression (CCR). This process defines some metabolic and physiological constraints that must be considered during the development of production strains. In this review, we summarize the importance of the PTS in controlling and influencing both PTS and non-PTS sugar transport processes as well as the mechanisms of transcriptional control involved in the expression of catabolic genes of non-PTS sugars in E. coli. We discuss three main approaches applied efficiently to avoid these constraints resulting in obtaining PTS− glc+ mutants useful for production purposes: (1) adaptive selection in chemostat culture system of PTS− mutants, resulting in the selection of strains that recovered the ability to grow in glucose, along with the simultaneous consumption of two carbon sources and reduced acetate production; (2) replacement in PTS− strains of the native GalP promoter by strong promoters or the substitution of this permease by recombinant glucose transport system; and (3) enhancement of Crp (crp+) in mgsA, pgi, and ptsG mutants, resulting in derivative strains that abolished CCR, allowing the simultaneous consumption of mixtures of sugars with low acetate production.
International Journal of Food Microbiology | 2008
Adelfo Escalante; Martha Giles-Gómez; Georgina Hernández; María Soledad Córdova-Aguilar; Agustín López-Munguía; Guillermo Gosset; Francisco Bolívar
In this study, the characterization of the bacterial community present during the fermentation of pulque, a traditional Mexican alcoholic beverage from maguey (Agave), was determined for the first time by a polyphasic approach in which both culture and non-culture dependent methods were utilized. The work included the isolation of lactic acid bacteria (LAB), aerobic mesophiles, and 16S rDNA clone libraries from total DNA extracted from the maguey sap (aguamiel) used as substrate, after inoculation with a sample of previously produced pulque and followed by 6-h fermentation. Microbiological diversity results were correlated with fermentation process parameters such as sucrose, glucose, fructose and fermentation product concentrations. In addition, medium rheological behavior analysis and scanning electron microscopy in aguamiel and during pulque fermentation were also performed. Our results showed that both culture and non-culture dependent approaches allowed the detection of several new and previously reported species within the alpha-, gamma-Proteobacteria and Firmicutes. Bacteria diversity in aguamiel was composed by the heterofermentative Leuconostoc citreum, L. mesenteroides, L. kimchi, the gamma-Proteobacteria Erwinia rhapontici, Enterobacter spp. and Acinetobacter radioresistens. Inoculation with previously fermented pulque incorporated to the system microbiota, homofermentative lactobacilli related to Lactobacillus acidophilus, several alpha-Proteobacteria such as Zymomonas mobilis and Acetobacter malorum, other gamma-Proteobacteria and an important amount of yeasts, creating a starting metabolic diversity composed by homofermentative and heterofermentative LAB, acetic and ethanol producing microorganisms. At the end of the fermentation process, the bacterial diversity was mainly composed by the homofermentative Lactobacillus acidophilus, the heterofermentative L. mesenteroides, Lactococcus lactis subsp. lactis and the alpha-Proteobacteria A. malorum. After a 6-h fermentation, 83.27% of total sugars detected after inoculation were consumed (228.4 mM hexose equivalents) and a carbon (C) recovery of 66.18% in fermentation products was estimated. They were produced 284.4 mM C as ethanol, 71.5 mM C as acetic acid and 19 mM C as lactic acid, demonstrating the presence of homo- and heterofermentative, acetic and alcoholic metabolisms in the final product. It was also found, after hydrolysis, that the exopolysaccharide produced during the fermentation was mainly composed by fructose residues, probably inulin or levan.
Microbial Cell Factories | 2010
Adelfo Escalante; Rocío Calderón; Araceli Valdivia; Ramón de Anda; Georgina Hernández; Octavio T. Ramírez; Guillermo Gosset; Francisco Bolívar
BackgroundShikimic acid (SA) is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12) lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS-) but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK, aroL, pykF or pykA and the expression of plasmid-coded genes aroGfbr, tktA, aroB and aroE, on SA synthesis.ResultsBatch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate (μ) and specific glucose consumption rate (qs), but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK-aroL- mutant expressing plasmid-coded genes (strain PB12.SA22) accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY) of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ, qs, SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol).ConclusionsThe effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL, and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS- background. Results indicate differential roles of Pyk isoenzymes on growth and aromatic compound production. This study demonstrated for the first time the simultaneous inactivation of PTS and pykF as part of a strategy to improve SA production and its aromatic precursors in E. coli, with a resulting high yield of aromatic compounds on glucose of 0.5 mol/mol.
Microbial Cell Factories | 2014
Alberto Rodriguez; Juan A Martnez; Noem Flores; Adelfo Escalante; Guillermo Gosset; Francisco Bolívar
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.
International Journal of Food Microbiology | 2001
Adelfo Escalante; Carmen Wacher; Amelia Farrés
The lactic acid bacteria diversity of pozol, a Mexican fermented maize dough, was studied using a total DNA extraction and purification procedure and PCR amplification of 16S rDNA for gram-positive and related bacterial groups. Thirty-six clones were obtained and sequenced to 650 nucleotides. These partial sequences were identified by submission to the non-redundant nucleotide database of NCBI. The identified sequences were aligned with reference sequences of the closest related organisms. This analysis indicated that only 14 sequences were unique clones and these were identified as Lactococcus lactis, Streptococcus suis, Lactobacillus plantarum, Lact. casei, Lact. alimentarium, and Lact. delbruekii and Clostridium sp. Two non-ribosomal sequences were also detected. Unlike other environments analyzed with this molecular approach where many unidentified microorganisms are found, the identity of most sequences could be established as lactic acid bacteria, indicating that this is the main group among the gram-positive bacteria in pozol. Use of this molecular method permitted detection of lactic acid bacteria different from those previously isolated and identified by culture techniques
Journal of Applied Microbiology | 1998
Adelfo Escalante; Carmen Wacher-Rodarte; Mariano García-Garibay; Amelia Farrés
The role of the enzymes uridine‐5′‐diphospho‐(UDP) glucose pyrophosphorylase and UDP galactose 4‐epimerase in exopolysaccharide production of Gal− ropy and non‐ropy strains of Streptococcus thermophilus in a batch culture was investigated. Growth of the ropy and non‐ropy strains was accompanied by total release of the galactose moiety from lactose hydrolysis in modified Bellinker broth with lactose as the only carbon source. This was associated with a greater exopolysaccharide production by the ropy strain. The polymer produced by both strains in cultures with lactose or glucose as carbon sources contained glucose, galactose and rhamnose, indicating that glucose was used as a carbon source for bacterial growth and for exopolysaccharide formation. UDP‐glucose pyrophosphorylase activity was associated with polysaccharide production during the first 12 h in a 20 h culture in the ropy strain, but not in the non‐ropy strain. UDP‐galactose 4‐epimerase was not associated with exopolysaccharide synthesis in any strain. The evidence presented suggests that the glucose moiety from lactose hydrolysis is the source of sugar for heteropolysaccharide synthesis, due to a high UDP‐glucose pyrophosphorylase activity.
Journal of Molecular Microbiology and Biotechnology | 2007
Noemí Flores; Lidia Leal; Juan Carlos Sigala; Ramón de Anda; Adelfo Escalante; Alfredo Martinez; Octavio T. Ramírez; Guillermo Gosset; Francisco Bolívar
In Escherichia coli the phosphotransferase system (PTS) consumes one molecule of phosphoenolpyruvate (PEP) to phosphorylate each molecule of internalized glucose. PEP bioavailability into the aromatic pathway can be increased by inactivating the PTS. However, the lack of the PTS results in decreased glucose transport and growth rates. To overcome such drawbacks in a PTS– strain and reconstitute rapid growth on glucose phenotype (Glc+), the glk and galP genes were cloned into a plasmid and the arcA gene was inactivated. Simultaneous overexpression of glk and galP increased the growth rate and regenerated a Glc+ phenotype. However, the highest growth rate was obtained when glk and galP were overexpressed in the arcA– background. These results indicated that the arcA mutation enhanced glycolytic and respiratory capacities of the engineered strain.
Journal of Molecular Microbiology and Biotechnology | 2004
Noemí Flores; Ramón de Anda; Salvador Flores; Adelfo Escalante; Georgina Hernández; Alfredo Martinez; Octavio T. Ramírez; Guillermo Gosset; Francisco Bolívar
We report a study to determine the role of pyruvate oxidase among Escherichia coli isogenic strains with active and inactive phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). Strain PB11, displaying a specific growth rate (µ) in glucose minimal medium of 0.1 h–1 is a ptsHI, crr operon deletion derivative of wild-type JM101 (displaying a µ of 0.70 h–1). Strain PB12 is a spontaneous mutant obtained from PB11 after selection for its capacity to grow on glucose with a µ of 0.40 h–1. In minimal medium cultures supplemented with glucose plus acetate, strain JM101 displayed preferential consumption of glucose, whereas strains PB11 and PB12 did not display glucose catabolic repression of acetate consumption. Inactivation of poxB caused a severe reduction in growth rate in strain PB11 when grown in the fermentor with medium containing glucose or glucose plus acetate, whereas under the same conditions poxB–derivative strains of JM101 and PB12 were not affected. Relative transcript levels for 29 genes related to poxB transcriptional regulation and central metabolism were determined using RT-PCR. This analysis revealed 2-fold lower transcript levels for genes encoding subunits of the pyruvate dehydrogenase complex (Pdh) in strain PB11 and 4- to 6-fold higher transcript levels for poxB in strains PB11 and PB12, when compared to JM101. In addition, in the PTS– strains, upregulation of the poxB transcription factors rpoS, soxS and marA, was detected. The results presented here strongly suggest that AcCoA is mainly synthesized from acetate produced by pyruvate oxidase in strain PB11, whereas in strains JM101 and PB12, AcCoA is synthesized preferentially from pyruvate by Pdh.
BMC Genomics | 2012
César Aguilar; Adelfo Escalante; Noemí Flores; Ramón de Anda; Fernando Riveros-McKay; Guillermo Gosset; Francisco Bolívar
BackgroundEscherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS), which is the major bacterial component involved in glucose transport and its phosphorylation, accumulate high amounts of phosphoenolpyruvate that can be diverted to the synthesis of commercially relevant products. However, these strains grow slowly in glucose as sole carbon source due to its inefficient transport and metabolism. Strain PB12, with 400% increased growth rate, was isolated after a 120 hours adaptive laboratory evolution process for the selection of faster growing derivatives in glucose. Analysis of the genetic changes that occurred in the PB12 strain that lacks PTS will allow a better understanding of the basis of its growth adaptation and, therefore, in the design of improved metabolic engineering strategies for enhancing carbon diversion into the aromatic pathways.ResultsWhole genome analyses using two different sequencing methodologies: the Roche NimbleGen Inc. comparative genome sequencing technique, and high throughput sequencing with Illumina Inc. GAIIx, allowed the identification of the genetic changes that occurred in the PB12 strain. Both methods detected 23 non-synonymous and 22 synonymous point mutations. Several non-synonymous mutations mapped in regulatory genes (arcB, barA, rpoD, rna) and in other putative regulatory loci (yjjU, rssA and ypdA). In addition, a chromosomal deletion of 10,328 bp was detected that removed 12 genes, among them, the rppH, mutH and galR genes. Characterization of some of these mutated and deleted genes with their functions and possible functions, are presented.ConclusionsThe deletion of the contiguous rppH, mutH and galR genes that occurred simultaneously, is apparently the main reason for the faster growth of the evolved PB12 strain. In support of this interpretation is the fact that inactivation of the rppH gene in the parental PB11 strain substantially increased its growth rate, very likely by increasing glycolytic mRNA genes stability. Furthermore, galR inactivation allowed glucose transport by GalP into the cell. The deletion of mutH in an already stressed strain that lacks PTS is apparently responsible for the very high mutation rate observed.