Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramón de Anda is active.

Publication


Featured researches published by Ramón de Anda.


Microbial Cell Factories | 2008

Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

Karla Xadany Cabral Martínez; Ramón de Anda; Georgina Hernández; Adelfo Escalante; Guillermo Gosset; Octavio T. Ramírez; Francisco Bolívar

BackgroundEscherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) are capable of coutilizing glucose and other carbon sources due to the absence of catabolite repression by glucose. In these strains, the lack of this important regulatory and transport system allows the coexistence of glycolytic and gluconeogenic pathways. Strains lacking PTS have been constructed with the goal of canalizing part of the phosphoenolpyruvate (PEP) not consumed in glucose transport to the aromatic pathway. The deletion of the ptsHIcrr operon inactivates PTS causing poor growth on this sugar; nonetheless, fast growing mutants on glucose have been isolated (PB12 strain). However, there are no reported studies concerning the growth potential of a PTS- strain in mixtures of different carbon sources to enhance the production of aromatics compounds.ResultsPB12 strain is capable of coutilizing mixtures of glucose-arabinose, glucose-gluconate and glucose-glycerol. This capacity increases its specific growth rate (μ) given that this strain metabolizes more moles of carbon source per unit time. The presence of plasmids pRW300aroGfbrand pCLtktA reduces the μ of strain PB12 in all mixtures of carbon sources, but enhances the productivity and yield of aromatic compounds, especially in the glucose-glycerol mixture, as compared to glucose or glycerol cultures. No acetate was detected in the glycerol and the glucose-glycerol batch fermentations.ConclusionDue to the lack of catabolite repression, PB12 strain carrying multicopy plasmids containing tktA and aroGfbrgenes is capable of coutilizing glucose and other carbon sources; this capacity, reduces its μ but increases the production of aromatic compounds.


Microbial Cell Factories | 2010

Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

Adelfo Escalante; Rocío Calderón; Araceli Valdivia; Ramón de Anda; Georgina Hernández; Octavio T. Ramírez; Guillermo Gosset; Francisco Bolívar

BackgroundShikimic acid (SA) is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12) lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS-) but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK, aroL, pykF or pykA and the expression of plasmid-coded genes aroGfbr, tktA, aroB and aroE, on SA synthesis.ResultsBatch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate (μ) and specific glucose consumption rate (qs), but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK-aroL- mutant expressing plasmid-coded genes (strain PB12.SA22) accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY) of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ, qs, SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol).ConclusionsThe effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL, and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS- background. Results indicate differential roles of Pyk isoenzymes on growth and aromatic compound production. This study demonstrated for the first time the simultaneous inactivation of PTS and pykF as part of a strategy to improve SA production and its aromatic precursors in E. coli, with a resulting high yield of aromatic compounds on glucose of 0.5 mol/mol.


Journal of Molecular Microbiology and Biotechnology | 2007

Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.

Noemí Flores; Lidia Leal; Juan Carlos Sigala; Ramón de Anda; Adelfo Escalante; Alfredo Martinez; Octavio T. Ramírez; Guillermo Gosset; Francisco Bolívar

In Escherichia coli the phosphotransferase system (PTS) consumes one molecule of phosphoenolpyruvate (PEP) to phosphorylate each molecule of internalized glucose. PEP bioavailability into the aromatic pathway can be increased by inactivating the PTS. However, the lack of the PTS results in decreased glucose transport and growth rates. To overcome such drawbacks in a PTS– strain and reconstitute rapid growth on glucose phenotype (Glc+), the glk and galP genes were cloned into a plasmid and the arcA gene was inactivated. Simultaneous overexpression of glk and galP increased the growth rate and regenerated a Glc+ phenotype. However, the highest growth rate was obtained when glk and galP were overexpressed in the arcA– background. These results indicated that the arcA mutation enhanced glycolytic and respiratory capacities of the engineered strain.


Journal of Molecular Microbiology and Biotechnology | 2004

Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system.

Noemí Flores; Ramón de Anda; Salvador Flores; Adelfo Escalante; Georgina Hernández; Alfredo Martinez; Octavio T. Ramírez; Guillermo Gosset; Francisco Bolívar

We report a study to determine the role of pyruvate oxidase among Escherichia coli isogenic strains with active and inactive phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). Strain PB11, displaying a specific growth rate (µ) in glucose minimal medium of 0.1 h–1 is a ptsHI, crr operon deletion derivative of wild-type JM101 (displaying a µ of 0.70 h–1). Strain PB12 is a spontaneous mutant obtained from PB11 after selection for its capacity to grow on glucose with a µ of 0.40 h–1. In minimal medium cultures supplemented with glucose plus acetate, strain JM101 displayed preferential consumption of glucose, whereas strains PB11 and PB12 did not display glucose catabolic repression of acetate consumption. Inactivation of poxB caused a severe reduction in growth rate in strain PB11 when grown in the fermentor with medium containing glucose or glucose plus acetate, whereas under the same conditions poxB–derivative strains of JM101 and PB12 were not affected. Relative transcript levels for 29 genes related to poxB transcriptional regulation and central metabolism were determined using RT-PCR. This analysis revealed 2-fold lower transcript levels for genes encoding subunits of the pyruvate dehydrogenase complex (Pdh) in strain PB11 and 4- to 6-fold higher transcript levels for poxB in strains PB11 and PB12, when compared to JM101. In addition, in the PTS– strains, upregulation of the poxB transcription factors rpoS, soxS and marA, was detected. The results presented here strongly suggest that AcCoA is mainly synthesized from acetate produced by pyruvate oxidase in strain PB11, whereas in strains JM101 and PB12, AcCoA is synthesized preferentially from pyruvate by Pdh.


BMC Genomics | 2012

Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system

César Aguilar; Adelfo Escalante; Noemí Flores; Ramón de Anda; Fernando Riveros-McKay; Guillermo Gosset; Francisco Bolívar

BackgroundEscherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS), which is the major bacterial component involved in glucose transport and its phosphorylation, accumulate high amounts of phosphoenolpyruvate that can be diverted to the synthesis of commercially relevant products. However, these strains grow slowly in glucose as sole carbon source due to its inefficient transport and metabolism. Strain PB12, with 400% increased growth rate, was isolated after a 120 hours adaptive laboratory evolution process for the selection of faster growing derivatives in glucose. Analysis of the genetic changes that occurred in the PB12 strain that lacks PTS will allow a better understanding of the basis of its growth adaptation and, therefore, in the design of improved metabolic engineering strategies for enhancing carbon diversion into the aromatic pathways.ResultsWhole genome analyses using two different sequencing methodologies: the Roche NimbleGen Inc. comparative genome sequencing technique, and high throughput sequencing with Illumina Inc. GAIIx, allowed the identification of the genetic changes that occurred in the PB12 strain. Both methods detected 23 non-synonymous and 22 synonymous point mutations. Several non-synonymous mutations mapped in regulatory genes (arcB, barA, rpoD, rna) and in other putative regulatory loci (yjjU, rssA and ypdA). In addition, a chromosomal deletion of 10,328 bp was detected that removed 12 genes, among them, the rppH, mutH and galR genes. Characterization of some of these mutated and deleted genes with their functions and possible functions, are presented.ConclusionsThe deletion of the contiguous rppH, mutH and galR genes that occurred simultaneously, is apparently the main reason for the faster growth of the evolved PB12 strain. In support of this interpretation is the fact that inactivation of the rppH gene in the parental PB11 strain substantially increased its growth rate, very likely by increasing glycolytic mRNA genes stability. Furthermore, galR inactivation allowed glucose transport by GalP into the cell. The deletion of mutH in an already stressed strain that lacks PTS is apparently responsible for the very high mutation rate observed.


Journal of Molecular Microbiology and Biotechnology | 2009

Acetate Metabolism in Escherichia coli Strains Lacking Phosphoenolpyruvate: Carbohydrate Phosphotransferase System; Evidence of Carbon Recycling Strategies and Futile Cycles

Juan Carlos Sigala; Salvador Flores; Noemí Flores; César Aguilar; Ramón de Anda; Guillermo Gosset; Francisco Bolívar

The ptsHIcrr operon was deleted from Escherichia coli wild-type JM101 to generate strain PB11 (PTS–). In a mutant derived from PB11 that partially recovered its growth capacity on glucose by an adaptive evolution process (PB12, PTS–Glc+), part of the phosphoenolpyruvate not used in glucose transport has been utilized for the synthesis of aromatic compounds. In this report, it is shown that on acetate as a carbon source, PB11 displayed a specific growth rate (μ) higher than PB12 (0.21 and 0.13 h–1, respectively) while JM101 had a μ of 0.28 h–1. To understand these growth differences on acetate, we compared the expression profiles of central metabolic genes by RT-PCR analysis. Obtained data revealed that some gluconeogenic genes were downregulated in both PTS– strains as compared to JM101, while most glycolytic genes were upregulated in PB12 in contrast to PB11 and JM101. Furthermore, inactivation of gluconeogenic genes, like ppsA, sfcA, and maeB,and poxB gene that codes for pyruvate oxidase, has differential impacts in the acetate metabolism of these strains. Results indicate that growth differences on acetate in the PTS– derivatives are due to potential carbon recycling strategies, mainly in PB11, and futile carbon cycles, especially in PB12.


Journal of Molecular Microbiology and Biotechnology | 2005

Nutrient-Scavenging Stress Response in an Escherichia coli Strain Lacking the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System, as Explored by Gene Expression Profile Analysis

Salvador Flores; Noemí Flores; Ramón de Anda; Alicia González; Adelfo Escalante; Juan Carlos Sigala; Guillermo Gosset; Francisco Bolívar

The physiological role of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) has been studied in Escherichia coli. It has been shown that it directly or indirectly regulates the activity of most catabolic genes involved in carbohydrate transport. Accordingly, strains lacking PTS have pleiotropic phenotypes and are impaired in their capacity to grow on glucose and other PTS sugars. We have previously reported the characterization of a mutant harboring a pts operon deletion (PB11) which, as expected, showed a severe reduction of its growth capacity when incubated on glucose as carbon source, as compared to that of the isogenic wild-type strain. These observations corroborate that PTS is the main determinant of the capacity to grow on glucose and confirm the existence of other systems that allow glucose utilization although at a reduced level. To explore the physiological state and the metabolic pathways involved in glucose utilization in a pts– background, we analyzed the global transcriptional response of the PB11 mutant when growing in minimal medium with glucose as carbon source. Genome-wide transcriptional analysis using microarrays revealed that, under this condition, expression of several genes related to carbon transport and metabolism was upregulated, as well as that of genes encoding transporters for certain nucleotides, nitrogen, phosphorus and sulfur sources. In addition, upregulation of rpoS and several genes transcribed by this sigma subunit was detected. These results indicate that the reduced capacity of glucose utilization present in the PB11 strain induces a general nutrient-scavenging response and this behavior is not dependent on a functional PTS. This condition is responsible of the utilization of secondary carbon sources in the presence of glucose.


Journal of Molecular Microbiology and Biotechnology | 2008

New insights into the role of sigma factor RpoS as revealed in escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system.

Noemí Flores; Adelfo Escalante; Ramón de Anda; José Luis Báez-Viveros; Enrique Merino; Bernardo Franco; Guillermo Gosset; Francisco Bolívar

It has been demonstrated that about 10% of the Escherichia coli genes are under direct or indirect control of RpoS. Therefore, Weber et al. [2005] proposed that this sigma subunit should be considered a second vegetative sigma factor under non-optimal growth conditions. In this report we demonstrate that in the phosphoenolpyruvate:carbohydrate phosphotransferase system-deficient (PTS–) derivatives, PB11 and PB12 of strain JM101 that permanently grow slowly on glucose, the inactivation of rpoS resulted in decreased growth rates of 50 and 10%, respectively. Real-time PCR (RT-PCR) analysis confirmed the important role of this sigma factor in the PTS– strains and allowed the identification of 19 genes including almost all the glycolytic genes, not previously reported, to be at least partially dependent on RpoS. The transcription level of gpp, spoT, ppa and ndk whose products are involved in ppGpp metabolism was upregulated in strain PB12 as compared to the parental strains PB11 and JM101. In the PTS– strains, at least three of these genes (gpp, spoT and ppa) were mainly or partially regulated by RpoS which is known to require ppGpp for activation, while only gpp was highly RpoS-dependent in the parental PTS+ strain JM101. The role of RpoS in the transcription of these genes was analyzed and evidence that the expression of this group of genes could be regulated by a common factor in addition to RpoS was discussed.


Applied Microbiology and Biotechnology | 1986

A new expression vector for the production of fused proteins in Escherichia coli

Noemí Flores; Ramón de Anda; Leopoldo Güereca; Norberto Cruz; Salvador Antonio; Paulina Balbás; Francisco Bolívar; Fernando Valle

SummaryThe construction of a new expression vector for fused proteins production in Escherichia coli is reported. This new vehicle uses the trp promoter-operator control region for the high level expression of a DNA fragment that codes for the amino terminal fragment of the cI λ repressor protein. This truncated polypeptide is accumulated as inclusion bodies that are easily purified. To probe the benefits of the system, synthetic DNA that codes for the human insulin B chain, was cloned at the end of the DNA coding region for the cI truncated peptide. The hybrid peptide thus produced after induction, allowed an easy and reproducible purification of active insulin B chain.


Plasmid | 2013

A novel plasmid vector designed for chromosomal gene integration and expression: Use for developing a genetically stable Escherichia coli melanin production strain

Andrea Sabido; Luz María Martínez; Ramón de Anda; Alfredo Martinez; Francisco Bolívar; Guillermo Gosset

Recombinant Escherichia coli strains for the production of valuable products are usually generated by transformation with plasmid expression vectors. However, in spite of their usefulness, common problems associated with plasmid use include segregrational and structural instability as well as undesired copy-number effects. A viable alternative to plasmid use is chromosomal gene integration. With the purpose of facilitating the process of stable strain generation, a novel chromosomal integration vector was developed and tested. We describe the construction and use of novel expression vector pLoxGentrc that contains the strong trc promoter (P(trc)), a multiple cloning site, the T1 and T2 rrnB terminator sequences, the lacI(q) gene and the aacC1 gene conferring gentamicin resistance flanked by two loxP sites. As a demonstration of utility, melanin-producing strains of E. coli were generated employing this vector. Melanin is a polymer synthesized by the enzyme tyrosinase using l-tyrosine as substrate. The melA gene encoding a tyrosinase from Rhizobium etli was ligated to pLoxGentrc to generate pLoxGentrcmelA. This plasmid was transformed into E. coli W3110 to generate a melanin-producing strain. A region from this plasmid including P(trc)melA, T1 and T2 rrnB and the aacC1 gene was amplified by PCR employing primers with 45 b regions of homology to the lacZ gene. The PCR product was electroporated into strain W3110 that expressed the λ-Red enzymes. From this experiment, strain W3110P(tr)(c)melA, was obtained having the melA gene inserted in the lacZ locus. Fermentor cultures with strain W3110/pLoxGentrcmelA grown in the presence and absence of gentamicin as well as W3110P(tr)(c)melA without antibiotic revealed that the latter displays high genetic stability as well as the highest melanin titer. Vector pLoxGentrc should be useful during strain generation processes, enabling direct comparison of plasmid and chromosome-based production systems.

Collaboration


Dive into the Ramón de Anda's collaboration.

Top Co-Authors

Avatar

Francisco Bolívar

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Guillermo Gosset

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Adelfo Escalante

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Noemí Flores

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alfredo Martinez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Octavio T. Ramírez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Georgina Hernández

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Salvador Flores

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

José Luis Báez-Viveros

Universidad Autónoma del Estado de Morelos

View shared research outputs
Top Co-Authors

Avatar

Bernardo Franco

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge