Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adewale Oshinuga is active.

Publication


Featured researches published by Adewale Oshinuga.


Related Information: SAE Paper No. 2004-01-2959; Posted w/permission. Presented at the 2004 SAE Powertrain & Fluid Systems Conference & Exhibition; October 2004; Tampa, Florida | 2004

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

Teresa L. Alleman; Leslie Eudy; Matt Miyasato; Adewale Oshinuga; Scott Allison; Tom Corcoran; Sougato Chatterjee; Todd Jacobs; Ralph A. Cherrillo; Richard Hugh Clark; Ian Geoffrey Virrels; Ralph D. Nine; Scott Wayne; Ron Lansing

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Mattheys CCRT diesel particulate filter. No engine modifications were made.


Environmental Science & Technology | 2012

Influence of Real-World Engine Load Conditions on Nanoparticle Emissions from a DPF and SCR Equipped Heavy-Duty Diesel Engine

Arvind Thiruvengadam; Marc Besch; Daniel K. Carder; Adewale Oshinuga; Mridul Gautam

The experiments aimed at investigating the effect of real-world engine load conditions on nanoparticle emissions from a Diesel Particulate Filter and Selective Catalytic Reduction after-treatment system (DPF-SCR) equipped heavy-duty diesel engine. The results showed the emission of nucleation mode particles in the size range of 6-15 nm at conditions with high exhaust temperatures. A direct result of higher exhaust temperatures (over 380 °C) contributing to higher concentration of nucleation mode nanoparticles is presented in this study. The action of an SCR catalyst with urea injection was found to increase the particle number count by over an order of magnitude in comparison to DPF out particle concentrations. Engine operations resulting in exhaust temperatures below 380 °C did not contribute to significant nucleation mode nanoparticle concentrations. The study further suggests the fact that SCR-equipped engines operating within the Not-To-Exceed (NTE) zone over a critical exhaust temperature and under favorable ambient dilution conditions could contribute to high nanoparticle concentrations to the environment. Also, some of the high temperature modes resulted in DPF out accumulation mode (between 50 and 200 nm) particle concentrations an order of magnitude greater than typical background PM concentrations. This leads to the conclusion that sustained NTE operation could trigger high temperature passive regeneration which in turn would result in lower filtration efficiencies of the DPF that further contributes to the increased solid fraction of the PM number count.


Environmental Science & Technology | 2015

Emission Rates of Regulated Pollutants from Current Technology Heavy-Duty Diesel and Natural Gas Goods Movement Vehicles

Arvind Thiruvengadam; Marc Besch; Pragalath Thiruvengadam; Saroj Pradhan; Daniel K. Carder; Hemanth Kappanna; Mridul Gautam; Adewale Oshinuga; Henry Hogo; Matt Miyasato

Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.


SAE transactions | 2005

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

Teresa L. Alleman; Christopher J. Tennant; R. Robert Hayes; Matt Miyasato; Adewale Oshinuga; Greg Barton; Marc Rumminger; Vinod Duggal; Christopher Nelson; Mike May; Ralph A. Cherrillo

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.


Journal of The Air & Waste Management Association | 2016

Unregulated, Greenhouse Gas and Ammonia Emissions from Current Technology Heavy-Duty Vehicles.

Arvind Thiruvengadam; Marc Besch; Daniel K. Carder; Adewale Oshinuga; Randall Pasek; Henry Hogo; Mridul Gautam

ABSTRACT The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.


SAE 2009 Powertrains Fuels and Lubricants Meeting | 2009

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel and Emissions Control Devices

Robb Barnitt; Donald J. Chernich; Mark Burnitzki; Adewale Oshinuga; Matt Miyasato; Erich Lucht; Douw van der Merwe; Paul Schaberg

A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.


ASME 2012 Internal Combustion Engine Division Fall Technical Conference | 2012

Evaluation of Drayage Truck Chassis Dynamometer Test Cycles and Emissions Measurement

Hemanth Kappanna; Marc Besch; Arvind Thiruvengadam; Pragalath Thiruvengadam; Peter Bonsack; Daniel K. Carder; Mridul Gautam; Jonathan Leonard; Rose Siengsubcharti; Kevin Maggay; Alberto Ayala; Adewale Oshinuga

In 2006, the ports of Long Beach and Los Angeles adopted the final San Pedro Bay Ports Clean Air Action Plan (CAAP), initiating a broad range of programs intended to improve the air quality of the port and rail yard communities in the South Coast Air Basin. As a result, the Technology Advancement Program (TAP) was formed to identify, evaluate, verify and accelerate the commercial availability of new emissions reduction technologies for emissions sources associated with port operations, [1]. Container drayage truck fleets, an essential part of the port operations, were identified as the second largest source of NOx and the fourth largest source of diesel PM emissions in the ports’ respective 2010 emissions inventories [2, 3]. In response, TAP began to characterize drayage truck operations in order to provide drayage truck equipment manufacturers with a more complete understanding of typical drayage duty cycles, which is necessary to develop emissions reduction technologies targeted at the drayage market.As part of the broader TAP program, the Ports jointly commissioned TIAX LLC to develop a series of drayage truck chassis dynamometer test-cycles. These cycles were based on the cargo transport distance, using vehicle operational data collected on a second-by-second basis from numerous Class 8 truck trips over a period of two weeks, while performing various modes of typical drayage-related activities. Distinct modes of operation were identified; these modes include creep, low-speed transient, high-speed transient and high-speed cruise. After the modes were identified, they were assembled in order to represent typical drayage operation, namely, near-dock operation, local operation and regional operation, based on cargo transport distances [4].The drayage duty-cycles, thus developed, were evaluated on a chassis dynamometer at West Virginia University (WVU) using a class 8 tractor powered by a Mack MP8-445C, 13 liter 445 hp, and Model Year (MY) 2011 engine. The test vehicle is equipped with a state-of-the-art emissions control system meeting 2010 emissions regulations for on-road applications. Although drayage trucks in the San Pedro Bay Ports do not have to comply with the 2010 heavy-duty emissions standards until 2023, more than 1,000 trucks already meet that standard and are equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) technology as used in the test vehicle. An overview of the cycle evaluation work, along with comparative results of emissions between integrated drayage operations, wherein drayage cycles are run as a series of shorter tests called drayage activities, and single continuous drayage operation cycles will be presented herein. Results show that emissions from integrated drayage operations are significantly higher than those measured over single continuous drayage operation, approximately 14% to 28% for distance-specific NOx emissions. Furthermore, a similar trend was also observed in PM emissions, but was difficult to draw a definite conclusion since PM emissions were highly variable and near detection limits in the presence of DPF. Therefore, unrepresentative grouping of cycle activity could lead to over-estimation of emissions inventory for a fleet of drayage vehicles powered by 2010 compliant on-road engines.Copyright


ASME 2011 Internal Combustion Engine Division Fall Technical Conference | 2011

Determination of Optimal Engine Parameters for Exhaust Emissions Reduction Using the Taguchi Method

Alessandro Cozzolini; Marc Besch; Michelangelo Ardanese; Raffaello Ardanese; Mridul Gautam; Adewale Oshinuga; Matt Miyasato

In order to meet the ever more stringent exhaust emissions regulations and improve fuel consumption, heavy-duty Diesel engines (HDDE) have been equipped with electronically controlled components, including Exhaust Gas Recirculation systems (EGR), Variable Geometry Turbochargers (VGT) and advanced Fuel Injection Equipment (FIE) allowing for more flexible engine optimization. The introduction of such components increased the number of parameters influencing the optimization procedure; thus, significantly increasing the required amount of test-cell time to achieve an optimal engine calibration. Moreover, the adoption of aftertreatment systems, such as Selective Catalytic Reduction (SCR) technology or Diesel Particulate Filter (DPF) systems, required to comply with latest US-2010 and EURO V emissions legislations, requires flexible engine calibrations to address their efficiency dependency upon the thermodynamic conditions of the engine exhaust. The primary objective of this study was to develop and implement a simple multivariate optimization technique to program any given engine with multiple calibrations, both for steady-state and transient conditions, capable of modifying exhaust properties in order to guarantee optimal aftertreatment efficiencies during a wide range of engine operation. Four engine parameters, each at three levels, were selected for the optimization process, namely, EGR rate, VGT position, Start of Injection (SOI) and Nozzle Opening Pressure (NOP) as a surrogate for fuel injection pressure. Changes in control parameters which lead to an improvement in one specific emissions component may however often result in the deterioration of another. Thus, a good understanding of the relationship between individual control parameter effects is of utmost importance to correctly attain the optimum condition in short time and simultaneously reduce the number of experiments to be performed. Therefore, Design of Experiment (DOE) via factorial design, using the Taguchi method, was adopted to simultaneously study multiple factors and isolate the effects of changes in a single engine parameter on exhaust emissions. Different engine calibrations were obtained for an 11-liter Volvo engine by performing a set of only nine experiments for each engine speed/load point, which were selected to be equally distributed underneath the engine’s lug-curve. The main engine calibrations proved to be test cycle independent since comparable emission levels were observed over the European Steady-State Cycle (ESC) as well as the Federal Test Procedure (FTP). Reductions in Oxides of Nitrogen (NOx ) on the order of 20% were achieved, while limiting the fuel consumption penalty to below 3%. Several high-efficiency calibrations were generated, achieving fuel consumption reductions close to 6%. Thus, the Taguchi method was found to be a viable way for simultaneous optimization of key engine parameters leading to a significant reduction in test-cell time; hence, relative development costs.Copyright


ASME 2010 Internal Combustion Engine Division Fall Technical Conference | 2010

Development of an Advanced Retrofit Aftertreatment System Targeting Toxic Air Contaminants and Particulate Matter Emissions From HD-CNG Engines

Hemanth Kappanna; Marc Besch; Daniel K. Carder; Mridul Gautam; Adewale Oshinuga; Matt Miyasato

Increasing urban pollution levels have led to the imposition of evermore stringent emissions regulations on heavy-duty engines used in transit buses. This has made compressed natural gas (CNG) a promising fuel for reducing emissions, particularly particulate matter (PM) from heavy-duty transit buses. Indeed, research studies performed at West Virginia University (WVU) and elsewhere have shown that pre-2010 compliant natural gas engines emit an order of magnitude lower PM emissions, on a mass basis, when compared to diesel engines without any exhaust aftertreatment devices. However, on a number basis, particle emissions in the nanoparticulate range were an order of magnitude higher for natural gas fueled buses than their diesel counterparts. There exists a significant number of pre-2007 CNG powered buses in transit agencies in the US and elsewhere in the world. Therefore, an exhaust aftertreatment device was designed and developed by WVU, in association with Lubrizol, to retrofit urban transit buses powered by MY2000 Cummins Westport C8.3G+ heavy-duty CNG engines, and effectively reduce Toxic Air Contaminants (TAC) and PM (mass and number count) exhaust emissions. The speciation results showed that the new exhaust aftertreatment device reduced emissions of metallic elements such as iron, zinc, nonmetallic minerals such as calcium, phosphorus and sulfur derived from lube oil additives to non-detectable levels, which otherwise could contribute to an increase in number count of nanoparticles. The carbonyl compounds were reduced effectively by the oxidation catalyst to levels below what were found in the dilution air. Also, hydrocarbons identified as TAC’s by California Air Resource Board (CARB) [1] were reduced to non-detectable levels. This ultimately reduced the number of nanoparticles to levels equal to that found in the dilution air.Copyright


Emission Control Science and Technology | 2016

Real-World Emissions from Modern Heavy-Duty Diesel, Natural Gas, and Hybrid Diesel Trucks Operating Along Major California Freight Corridors

David C. Quiros; Arvind Thiruvengadam; Saroj Pradhan; Marc Besch; Pragalath Thiruvengadam; Berk Demirgok; Daniel K. Carder; Adewale Oshinuga; Tao Huai; Shaohua Hu

Collaboration


Dive into the Adewale Oshinuga's collaboration.

Top Co-Authors

Avatar

Marc Besch

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Mridul Gautam

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Matt Miyasato

South Coast Air Quality Management District

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge