Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Besch is active.

Publication


Featured researches published by Marc Besch.


Environmental Science & Technology | 2012

Influence of Real-World Engine Load Conditions on Nanoparticle Emissions from a DPF and SCR Equipped Heavy-Duty Diesel Engine

Arvind Thiruvengadam; Marc Besch; Daniel K. Carder; Adewale Oshinuga; Mridul Gautam

The experiments aimed at investigating the effect of real-world engine load conditions on nanoparticle emissions from a Diesel Particulate Filter and Selective Catalytic Reduction after-treatment system (DPF-SCR) equipped heavy-duty diesel engine. The results showed the emission of nucleation mode particles in the size range of 6-15 nm at conditions with high exhaust temperatures. A direct result of higher exhaust temperatures (over 380 °C) contributing to higher concentration of nucleation mode nanoparticles is presented in this study. The action of an SCR catalyst with urea injection was found to increase the particle number count by over an order of magnitude in comparison to DPF out particle concentrations. Engine operations resulting in exhaust temperatures below 380 °C did not contribute to significant nucleation mode nanoparticle concentrations. The study further suggests the fact that SCR-equipped engines operating within the Not-To-Exceed (NTE) zone over a critical exhaust temperature and under favorable ambient dilution conditions could contribute to high nanoparticle concentrations to the environment. Also, some of the high temperature modes resulted in DPF out accumulation mode (between 50 and 200 nm) particle concentrations an order of magnitude greater than typical background PM concentrations. This leads to the conclusion that sustained NTE operation could trigger high temperature passive regeneration which in turn would result in lower filtration efficiencies of the DPF that further contributes to the increased solid fraction of the PM number count.


Environmental Science & Technology | 2014

Characterization of Particulate Matter Emissions from a Current Technology Natural Gas Engine

Arvind Thiruvengadam; Marc Besch; Seungju Yoon; John F. Collins; Hemanth Kappanna; Daniel K. Carder; Alberto Ayala; Jorn D. Herner; Mridul Gautam

Experiments were conducted to characterize the particulate matter (PM)-size distribution, number concentration, and chemical composition emitted from transit buses powered by a USEPA 2010 compliant, stoichiometric heavy-duty natural gas engine equipped with a three-way catalyst (TWC). Results of the particle-size distribution showed a predominant nucleation mode centered close to 10 nm. PM mass in the size range of 6.04 to 25.5 nm correlated strongly with mass of lubrication-oil-derived elemental species detected in the gravimetric PM sample. Results from oil analysis indicated an elemental composition that was similar to that detected in the PM samples. The source of elemental species in the oil sample can be attributed to additives and engine wear. Chemical speciation of particulate matter (PM) showed that lubrication-oil-based additives and wear metals were a major fraction of the PM mass emitted from the buses. The results of the study indicate the possible existence of nanoparticles below 25 nm formed as a result of lubrication oil passage through the combustion chamber. Furthermore, the results of oxidative stress (OS) analysis on the PM samples indicated strong correlations with both the PM mass calculated in the nanoparticle-size bin and the mass of elemental species that can be linked to lubrication oil as the source.


Environmental Science & Technology | 2015

Emission Rates of Regulated Pollutants from Current Technology Heavy-Duty Diesel and Natural Gas Goods Movement Vehicles

Arvind Thiruvengadam; Marc Besch; Pragalath Thiruvengadam; Saroj Pradhan; Daniel K. Carder; Hemanth Kappanna; Mridul Gautam; Adewale Oshinuga; Henry Hogo; Matt Miyasato

Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.


Journal of The Air & Waste Management Association | 2016

Unregulated, Greenhouse Gas and Ammonia Emissions from Current Technology Heavy-Duty Vehicles.

Arvind Thiruvengadam; Marc Besch; Daniel K. Carder; Adewale Oshinuga; Randall Pasek; Henry Hogo; Mridul Gautam

ABSTRACT The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.


ASME 2010 Internal Combustion Engine Division Fall Technical Conference | 2010

Soot Modeling for Advanced Control of Diesel Engine Aftertreatment

Vincenzo Mulone; Alessandro Cozzolini; Prabash Abeyratne; Daniele Littera; M. Thiagarajan; Marc Besch; Mridul Gautam

Diesel Particulate Filters (DPFs) are well assessed aftertreatment devices, equipping almost every modern diesel engine on the market to comply with today’s stringent emission standards. However, an accurate estimation of soot loading, which is instrumental to ensuring optimal performance of the whole engine-after-treatment assembly is still a major challenge. In fact, several highly coupled physical-chemical phenomena occur at the same time, and a vast number of engine and exhaust dependent parameters make this task even more daunting. This challenge may be solved with models characterized by different degrees of detail (0-D to 3-D) depending on the specific application. However, the use of real-time, but accurate enough models, may be of primary importance to face with advanced control challenges, such as the integration of the DPF with the engine or other critical aftertreatment components (Selective Catalytic Reduction (SCR) or other NOx control components), or to properly develop model-based OBD sensors. This paper aims at addressing real time DPF modeling issues with special regard to key parameter settings, by using the 1D code ExhAUST (Exhaust Aftertreatment Unified Simulation Tool), developed jointly by the University of Rome Tor Vergata and West Virginia University. ExhAUST is characterized by a novel and unique full analytical treatment of the wall that allows faithful representation with high degree of detail the evolution of soot loading inside the porous matrix. Numerical results are compared with experimental data gathered at West Virginia University (WVU) engine laboratory using a Mack heavy-duty diesel engine coupled to a Johnson Matthey CCRT (DOC, Diesel Oxidation Catalyst+CDPF, Catalyzed DPF) aftertreatment system. To that aim, the engine test bench has been equipped with a DPF weighing setup to track soot load over a specifically developed engine operating procedure. Obtained results indicate that the model is accurate enough to capture soot loading and back pressure histories with regard to different steady state engine operating points, without needing any tuning procedure of the key parameters. Thus, the use of ExhAUST for application to advanced after-treatment control appears promising at this stage.Copyright


ASME 2012 Internal Combustion Engine Division Fall Technical Conference | 2012

Integrated Physical and Chemical Measurements of PM Emissions of Dispersing Plume Heavy-Duty Diesel Truck: Wind Tunnel Studies: Part I — Design and Commissioning

Daniele Littera; Mario Velardi; Alessandro Cozzolini; G. Yoder; Marc Besch; Daniel K. Carder; Mridul Gautam

Over the past few decades there has been considerable progress made in understanding the processes leading to formation and evolution of particulate matter (PM) emissions from heavy duty diesel engines (HDDE). This progress has been primarily made under controlled laboratory conditions with the use of constant volume sampling (CVS) systems and to a limited extend through on-road chase studies. West Virginia University (WVU) is attempting to close the present knowledge gap by conducting detailed experiments in a custom designed and constructed environmental wind tunnel. The understanding and knowledge has recently been further extended to new emission reduction technologies, such as the diesel particulate filter (DPF) which has dramatically changed the size distribution and chemical composition of PM. Additionally, the selective catalytic reduction (SCR) technology has shown to further enhance the formation of nucleation mode particles as well as alter their morphology. Even with advances in technology there remains a considerable gap in the current level of understanding of PM formation and evolution, since the combustion generated PM from diesel engines is not discernible from the atmospheric background PM measured beyond 300m from highways. After being emitted from the vehicle exhaust system, the process of dilution in the atmosphere leads to a multitude of PM transformation phenomena, such as volatilization, coagulation, and condensation. The work presented herein has been divided into two parts which are published separately from each another.The first part describes the design and commissioning process of the wind tunnel focusing on both, aerodynamic and structural constraints, which ultimately led to the definition of the main characteristics of the facility. The resulting design is a subsonic, non-recirculating, suction type tunnel, with a 16ft high and 16ft wide test section capable of housing a full-size heavy-duty tractor cab. A 2,200hp suction fan is employed to provide up to 80 mph wind speeds. The 115ft test cell length guarantees for a 2 second residence time for the exhaust plume evolution (at 35 mph) and complies with turbulence intensity (less than 1%) and quality flow requirement as identified for this type of application. In addition, the West Virginia University (WVU) wind tunnel has been equipped with a custom made sampling system able to move in all three dimensions in order to measure spatially resolved plume characteristics.The second part will describe the actual test procedures and the experimental results and will be published in a separate paper.Copyright


SAE International journal of engines | 2017

Development of an Ammonia Reduction Aftertreatment Systems for Stoichiometric Natural Gas Engines

Saroj Pradhan; Arvind Thiruvengadam; Pragalath Thiruvengadam; Berk Demirgok; Marc Besch; Daniel K. Carder; Bharadwaj Sathiamoorthy

Development of an Ammonia Reduction After-treatment Systems for Stoichiometric Natural Gas Engines


ASME 2012 Internal Combustion Engine Division Spring Technical Conference | 2012

Waste Heat Recovery in Heavy-Duty Diesel Engines: A Thermodynamic Analysis of Waste Heat Availability for Implementation of Energy Recovery Systems Based Upon the Organic Rankine Cycle

Alessandro Cozzolini; Marc Besch; Daniele Littera; Hemanth Kappanna; P. Bonsack; Mridul Gautam; Stefano Cordiner; Vincenzo Mulone

In the past decade automotive industries have focused on the development of new technologies to improve the overall engine efficiency and lower emissions in order to satisfy the always more stringent emission standards introduced all around the world. Technical progress has primarily focused on two aspects; the optimization of the air-fuel mixture in the combustion chamber as well as the combustion process itself, leading to simultaneous improvements in both, efficiency (lowering fuel consumption for same power output) and emissions levels which ultimately result from the optimized combustion process. Although engine technology has made significant progress, even modern Diesel combustion engines do not exceed a maximum efficiency of approximately 40%. Hence, around 60% of the available energy carried by the fuel and entering the combustion chamber is dissipated as heat to the environment. The next steps in engine optimization will see the integration of waste heat recovery systems (WHRS) to increase the overall energy efficiency of the propulsion system by means of recovering parts of the waste heat generated during normal engine operation. The presented was aimed at analyzing the availability as well as the quality of heat to be used in WHRS for the case of heavy-duty Diesel (HDD) engines employed in Class-8 tractors, which are suitable candidates for optimization via WHRS implementation as their engines spend most of their time operating at quasi steady state conditions, such as highway cruise. Three different primary energy sources have been considered: exhaust gas recirculation (EGR) cooling system, engine cooling system and exhaust gas stream. Experimental data has been gathered at West Virginia University’s Engine and Emissions Research Laboratory (EERL) facility in order to quantify individual heat flows in a model year (MY) 2004 Mack® MP7-355E HDD engine operated over the 13 modes of the European Stationary Cycle (ESC). Analysis based on second law efficiency underlined that not the whole amount of waste heat can be successfully used for recovery purposes and that heat sources which offer a large amount of waste energy reveal to be inappropriate for recovery purposes in case of low operating temperature. Time integral analysis revealed that engine modes which appear to offer high recovery potential in terms of waste power may not be suitable engine operating conditions when the analysis is performed in terms of waste energy, depending on the particular engine cycle. Finally a simple thermodynamic model of a micro power unit running on an Organic Rankine Cycle (ORC) has been used to assess the theoretical improvement in engine efficiency during steady state operations based on a second law efficiency analysis approach.Copyright


Environmental Science & Technology | 2015

Correction to Characterization of Particulate Matter Emissions from a Current Technology Natural Gas Engine

Arvind Thiruvengadam; Marc Besch; Seungju Yoon; John Collins; Hemanth Kappanna; Daniel K. Carder; Alberto Ayala; Jorn D. Herner; Mridul Gautam

the figure showed a high mass fraction of lubrication oil derived elements and metals. Figure 4 of this erratum shows the corrected mass fraction of PM after the calculation error was addressed. The corrections of the error results in the conclusion that the mass fraction of lubrication oil derived elements and metals are less than 10% of total mass of PM. The comparison of distance-specific emissions of lubricationoil-derived elements from this study with previous SCRequipped diesel work presented by Hu et al. is discussed in Line 2, second column of page 8239 of the original manuscript. The original manuscript suggested that the distance-specific emissions of lubrication-oil-derived elements are an order of magnitude higher from TWC-equipped natural gas vehicles compared to DPF-SCR-equipped diesel over the UDDS driving cycle. As a result of the correction to the calculation, the results now conclude that the distance-specific emissions of lubrication-oil-derived elements from TWC-equipped natural gas engines are up to 2 times higher than the retrofit DPF-SCR equipped diesel engines. The overall conclusions of the study remain unchanged after the correction of the error. The original manuscript suggests the possibility of lubrication oil-derived elements from TWCequipped natural gas engines to contribute more toward particle number count in the 10 nm size range. The manuscript also suggests that renucleation of inorganic lubrication oil additives, passing through the combustion chamber of the engine to be the primary contributor to particle number count in this size range.


SAE 2014 World Congress & Exhibition | 2014

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

Peter Bonsack; Ross Ryskamp; Marc Besch; Daniel K. Carder; Mridul Gautam; John Nuszkowski

Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

Collaboration


Dive into the Marc Besch's collaboration.

Top Co-Authors

Avatar

Mridul Gautam

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adewale Oshinuga

South Coast Air Quality Management District

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matt Miyasato

South Coast Air Quality Management District

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saroj Pradhan

West Virginia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge