Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adhirai Marimuthu is active.

Publication


Featured researches published by Adhirai Marimuthu.


Nature | 2010

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF -mutant melanoma

Gideon Bollag; Peter Hirth; James H. Tsai; Jiazhong Zhang; Prabha N. Ibrahim; Hanna Cho; Wayne Spevak; Chao Zhang; Ying Zhang; Gaston Habets; Elizabeth A. Burton; Bernice Wong; Garson Tsang; Brian L. West; Ben Powell; Rafe Shellooe; Adhirai Marimuthu; Hoa Nguyen; Kam Y. J. Zhang; Dean R. Artis; Joseph Schlessinger; Fei Su; Brian Higgins; Raman Mahadevan Iyer; Kurt D'Andrea; Astrid Koehler; Michael Stumm; Paul S. Lin; Richard J. Lee; Joseph F. Grippo

B-RAF is the most frequently mutated protein kinase in human cancers. The finding that oncogenic mutations in BRAF are common in melanoma, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts. Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032 (ref. 5). In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumour regressions. At higher drug exposures afforded by a new amorphous drug formulation, greater than 80% inhibition of ERK phosphorylation in the tumours of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily. These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.

James H. Tsai; John T. Lee; Weiru Wang; Jiazhong Zhang; Hanna Cho; Shumeye Mamo; Ryan Bremer; Sam Gillette; Jun Kong; Nikolas K. Haass; Katrin Sproesser; Ling Li; Keiran S.M. Smalley; Daniel Fong; Yong-Liang Zhu; Adhirai Marimuthu; Hoa Nguyen; Billy Lam; Jennifer Liu; Ivana Cheung; Julie Rice; Yoshihisa Suzuki; Catherine Luu; Calvin Settachatgul; Rafe Shellooe; John Cantwell; Sung-Hou Kim; Joseph Schlessinger; Kam Y. J. Zhang; Brian L. West

BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors.


Nature | 2015

RAF inhibitors that evade paradoxical MAPK pathway activation

Chao Zhang; Wayne Spevak; Ying Zhang; Elizabeth A. Burton; Yan Ma; Gaston Habets; Jiazhong Zhang; Jack Lin; Todd Ewing; Bernice Matusow; Garson Tsang; Adhirai Marimuthu; Hanna Cho; Guoxian Wu; Weiru Wang; Daniel Fong; Hoa Nguyen; Songyuan Shi; Patrick Womack; Marika Nespi; Rafe Shellooe; Heidi Carias; Ben Powell; Emily Light; Laura Sanftner; Jason Walters; James H. Tsai; Brian L. West; Gary Conard Visor; Hamid Rezaei

Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed ‘paradox breakers’) that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394.


The New England Journal of Medicine | 2015

Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor

William D. Tap; Zev A. Wainberg; Stephen P. Anthony; Prabha N. Ibrahim; Chao Zhang; John H. Healey; Bartosz Chmielowski; Arthur P. Staddon; Allen Lee Cohn; Geoffrey I. Shapiro; Vicki L. Keedy; Arun S. Singh; Igor Puzanov; Eunice L. Kwak; Andrew J. Wagner; Daniel D. Von Hoff; Glen J. Weiss; Ramesh K. Ramanathan; Jiazhong Zhang; Gaston Habets; Ying Zhang; Elizabeth A. Burton; Gary Conard Visor; Laura Sanftner; Paul Severson; Hoa Nguyen; Marie J. Kim; Adhirai Marimuthu; Garson Tsang; Rafe Shellooe

BACKGROUND Expression of the colony-stimulating factor 1 (CSF1) gene is elevated in most tenosynovial giant-cell tumors. This observation has led to the discovery and clinical development of therapy targeting the CSF1 receptor (CSF1R). METHODS Using x-ray co-crystallography to guide our drug-discovery research, we generated a potent, selective CSF1R inhibitor, PLX3397, that traps the kinase in the autoinhibited conformation. We then conducted a multicenter, phase 1 trial in two parts to analyze this compound. In the first part, we evaluated escalations in the dose of PLX3397 that was administered orally in patients with solid tumors (dose-escalation study). In the second part, we evaluated PLX3397 at the chosen phase 2 dose in an extension cohort of patients with tenosynovial giant-cell tumors (extension study). Pharmacokinetic and tumor responses in the enrolled patients were assessed, and CSF1 in situ hybridization was performed to confirm the mechanism of action of PLX3397 and that the pattern of CSF1 expression was consistent with the pathological features of tenosynovial giant-cell tumor. RESULTS A total of 41 patients were enrolled in the dose-escalation study, and an additional 23 patients were enrolled in the extension study. The chosen phase 2 dose of PLX3397 was 1000 mg per day. In the extension study, 12 patients with tenosynovial giant-cell tumors had a partial response and 7 patients had stable disease. Responses usually occurred within the first 4 months of treatment, and the median duration of response exceeded 8 months. The most common adverse events included fatigue, change in hair color, nausea, dysgeusia, and periorbital edema; adverse events rarely led to discontinuation of treatment. CONCLUSIONS Treatment of tenosynovial giant-cell tumors with PLX3397 resulted in a prolonged regression in tumor volume in most patients. (Funded by Plexxikon; ClinicalTrials.gov number, NCT01004861.).


Proceedings of the National Academy of Sciences of the United States of America | 2009

Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent

Dean R. Artis; J. J. Lin; Chao Zhang; Weiru Wang; U. Mehra; M. Perreault; D. Erbe; H. I. Krupka; B. P. England; J. Arnold; A. N. Plotnikov; Adhirai Marimuthu; Hoa Nguyen; S. Will; M. Signaevsky; J. Kral; J. Cantwell; C. Settachatgull; D. S. Yan; Daniel Fong; A. Oh; S. Shi; P. Womack; Ben Powell; Gaston Habets; Brian L. West; Kam Y. J. Zhang; M. V. Milburn; G. P. Vlasuk; K. P. Hirth

In a search for more effective anti-diabetic treatment, we used a process coupling low-affinity biochemical screening with high-throughput co-crystallography in the design of a series of compounds that selectively modulate the activities of all three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARγ, and PPARδ. Transcriptional transactivation assays were used to select compounds from this chemical series with a bias toward partial agonism toward PPARγ, to circumvent the clinically observed side effects of full PPARγ agonists. Co-crystallographic characterization of the lead molecule, indeglitazar, in complex with each of the 3 PPARs revealed the structural basis for its PPAR pan-activity and its partial agonistic response toward PPARγ. Compared with full PPARγ-agonists, indeglitazar is less potent in promoting adipocyte differentiation and only partially effective in stimulating adiponectin gene expression. Evaluation of the compound in vivo confirmed the reduced adiponectin response in animal models of obesity and diabetes while revealing strong beneficial effects on glucose, triglycerides, cholesterol, body weight, and other metabolic parameters. Indeglitazar has now progressed to Phase II clinical evaluations for Type 2 diabetes mellitus (T2DM).


Neuro-oncology | 2016

Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study

Nicholas Butowski; Howard Colman; John F. de Groot; Antonio Omuro; Lakshmi Nayak; Patrick Y. Wen; Timothy F. Cloughesy; Adhirai Marimuthu; Sam Haidar; Arie Perry; Jason T. Huse; Joanna J. Phillips; Brian L. West; Keith Nolop; Henry H. Hsu; Keith L. Ligon; Annette M. Molinaro; Michael D. Prados

BACKGROUND The colony stimulating factor 1 receptor (CSF1R) ligands, CSF1 and interleukin-34, and the KIT ligand, stem cell factor, are expressed in glioblastoma (GB). Microglia, macrophages, blood vessels, and tumor cells also express CSF1R, and depletion of the microglia reduces tumor burden and invasive capacity. PLX3397 is an oral, small molecule that selectively inhibits CSF1R and KIT, penetrates the blood-brain barrier in model systems, and represents a novel approach for clinical development. METHODS We conducted a phase II study in patients with recurrent GB. The primary endpoint was 6-month progression-free survival (PFS6). Secondary endpoints included overall survival response rate, safety, and plasma/tumor tissue pharmacokinetics. Exploratory endpoints included pharmacodynamic measures of drug effect in blood and tumor tissue. RESULTS A total of 37 patients were enrolled, with 13 treated prior to a planned surgical resection (Cohort 1) and 24 treated without surgery (Cohort 2). PLX3397 was given at an oral dose of 1000 mg daily and was well tolerated. The primary efficacy endpoint of PFS6 was only 8.6%, with no objective responses. Pharmacokinetic endpoints revealed a median maximal concentration (Cmax) of 8090 ng/mL, with a time to attain Cmax of 2 hour in plasma. Tumor tissue obtained after 7 days of drug exposure revealed a median drug level of 5500 ng/g. Pharmacodynamic changes included an increase in colony stimulating factor 1 and reduced CD14(dim)/CD16+ monocytes in plasma compared with pretreatment baseline values. CONCLUSION PLX3397 was well tolerated and readily crossed the blood-tumor barrier but showed no efficacy. Additional studies are ongoing, testing combination strategies and potential biomarkers to identify patients with greater likelihood of response.


Nuclear Receptor | 2003

ERβ Binds N-CoR in the Presence of Estrogens via an LXXLL-like Motif in the N-CoR C-terminus

Paul Webb; Cathleen D. Valentine; Phuong Nguyen; Richard H. Price; Adhirai Marimuthu; Brian L. West; John D. Baxter; Peter J. Kushner

Nuclear receptors (NRs) usually bind the corepressors N-CoR and SMRT in the absence of ligand or in the presence of antagonists. Agonist binding leads to corepressor release and recruitment of coactivators. Here, we report that estrogen receptor β (ERβ) binds N-CoR and SMRT in the presence of agonists, but not antagonists, in vitro and in vivo. This ligand preference differs from that of ERα interactions with corepressors, which are inhibited by estradiol, and resembles that of ERβ interactions with coactivators. ERβ /N-CoR interactions involve ERβ AF-2, which also mediates coactivator recognition. Moreover, ERβ recognizes a sequence (PLTIRML) in the N-CoR C-terminus that resembles coactivator LXXLL motifs. Inhibition of histone deacetylase activity specifically potentiates ERβ LBD activity, suggesting that corepressors restrict the activity of AF-2. We conclude that the ER isoforms show completely distinct modes of interaction with a physiologically important corepressor and discuss our results in terms of ER isoform specificity in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor

Chao Zhang; Prabha N. Ibrahim; Jiazhong Zhang; Elizabeth A. Burton; Gaston Habets; Ying Zhang; Ben Powell; Brian L. West; Bernice Matusow; Garson Tsang; Rafe Shellooe; Heidi Carias; Hoa Nguyen; Adhirai Marimuthu; Kam Y. J. Zhang; Angela Oh; Ryan Bremer; Clarence R. Hurt; Dean R. Artis; Guoxian Wu; Marika Nespi; Wayne Spevak; Paul S. Lin; Keith Nolop; Peter Hirth; Gregory H Tesch; Gideon Bollag

Inflammation and cancer, two therapeutic areas historically addressed by separate drug discovery efforts, are now coupled in treatment approaches by a growing understanding of the dynamic molecular dialogues between immune and cancer cells. Agents that target specific compartments of the immune system, therefore, not only bring new disease modifying modalities to inflammatory diseases, but also offer a new avenue to cancer therapy by disrupting immune components of the microenvironment that foster tumor growth, progression, immune evasion, and treatment resistance. McDonough feline sarcoma viral (v-fms) oncogene homolog (FMS) and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) are two hematopoietic cell surface receptors that regulate the development and function of macrophages and mast cells, respectively. We disclose a highly specific dual FMS and KIT kinase inhibitor developed from a multifaceted chemical scaffold. As expected, this inhibitor blocks the activation of macrophages, osteoclasts, and mast cells controlled by these two receptors. More importantly, the dual FMS and KIT inhibition profile has translated into a combination of benefits in preclinical disease models of inflammation and cancer.


Cancer Discovery | 2018

BRD4 profiling identifies critical Chronic Lymphocytic Leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor

Hatice Gulcin Ozer; Dalia El-Gamal; Ben Powell; Zachary A. Hing; James S. Blachly; Bonnie K. Harrington; Shaneice Mitchell; Nicole R. Grieselhuber; Katie Williams; Tzung-Huei Lai; Lapo Alinari; Robert A. Baiocchi; Lindsey Brinton; Elizabeth Baskin; Matthew J. Cannon; Larry Beaver; Virginia M. Goettl; David M. Lucas; Jennifer A. Woyach; Deepa Sampath; Amy Lehman; Lianbo Yu; Jiazhong Zhang; Yan Ma; Ying Zhang; Wayne Spevak; Songyuan Shi; Paul Severson; Rafe Shellooe; Heidi Carias

Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.


Cancer Research | 2011

Abstract 553: Discovery of novel TRK/FMS dual inhibitors as therapeutic candidates for pancreatic cancer

James H. Tsai; Jiazhong Zhang; Brian L. West; Bernice Wong; Betsy Burton; Gaston Habets; Adhirai Marimuthu; Emily Light; Ben Powell; Rafe Shellooe; Heidi Carias; Songyuan Shi; Wayne Spevak; Hoa Nguyen; Garson Tsang; Ying Zhang; Todd Ewing; Chao Zhang; Prabha N. Ibrahim; Gideon Bollag

Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL Pancreatic cancer is a deadly malignancy in need of effective treatments. The most common driving oncogenes in pancreatic cancer – KRAS, p53, SMAD4, CDKN2A and CTNNB1 – historically have been difficult drug targets to modulate pharmacologically. An alternative approach could be to target regulators of tumor-stroma interactions. Pancreatic cancer invasion into neural tissue precedes tumor expansion. This perineural invasion is strongly associated with neural hypertrophy, pain and poor survival, and neurotrophins and their receptors (TRKs) are key suspects in mediating this process. At the same time, infiltrating macrophages are an additional component of the tumor microenvironment that supports tumor growth, invasion and inflammation, and the receptor for CSF-1 (FMS) is a key mediator of the function and survival of these macrophages. Both TRKs and FMS are transmembrane proteins with tyrosine kinase activities that can be inhibited with small molecule agents. We have developed a series of TRK/FMS dual inhibitors to target cancers that exhibit both neural and inflammatory components. These compounds inhibit biochemical TRK and FMS kinases with IC50 80% at doses of 20 mg/kg qd, and without body weight changes, showing that efficacy is not due to nonspecific toxicity. In a mouse Complete Freunds Adjuvant (CFA) model, robust efficacy was demonstrated in readouts of paw edema, thermal hyperalgesia and mechanical allodynia, showing that these compounds reduce swelling and pain. In the TRK-driven SK-N-SH xenograft model, tumor growth reduction of >50% was observed. These compounds also showed anti-tumor efficacy of >40% in an orthotopic Panc-1 (pancreatic cancer) model. Evaluation of compound effects on perineural invasion and inflammation is ongoing. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 553. doi:10.1158/1538-7445.AM2011-553

Collaboration


Dive into the Adhirai Marimuthu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiru Wang

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge